Low-Temperature Sintering and Microwave Dielectric Properties of the Zn2SiO4 Ceramics

2009 ◽  
Vol 66 ◽  
pp. 104-107 ◽  
Author(s):  
Ying Dai ◽  
Yao Sun ◽  
Wen Chen

Willemite ceramics (Zn2SiO4) possess excellent millimeter-wave dielectric properties, but it also has a high sintering temperature above 1300°C by traditional solid-state reaction and relatively large negative τf value. Zn2SiO4 nanoparticles synthesized by Sol–Gel method were used to improve the sintering and dielectric properties of the Zn2SiO4 ceramics. Using the nanoparticles, Zn2SiO4 ceramics can be sintered at a low temperature, 1150°C and exhibited improved microwave dielectric properties of εr =6.62, Q × f=24500 GHz, τf =-59ppm/°C. By adding TiO2 with high positive τf value (+450 ppm/°C) and CuO as sintering aid, near zero τf value and low sintering temperature can be achieved. With 11wt% of TiO2 and 5 wt% of CuO, an εr value of 9.3, a Q × f value of 12200GHz and a τf value of -11 ppm/°C were obtained at 1000°C, confirming the promising potential of the CuO-added TiO2-Zn2SiO4 ceramics as candidate materials for low–temperature cofired ceramic (LTCC) devices.

2014 ◽  
Vol 933 ◽  
pp. 12-16 ◽  
Author(s):  
Chung Long Pan ◽  
Ping Cheng Chen ◽  
Tsu Chung Tan ◽  
Wei Cheng Lin ◽  
Chun Hsu Shen ◽  
...  

The effect of V2O5addition on the microstructures and the microwave dielectric properties of 0.9CaWO4-0.1Mg2SiO4(9CWMS) ceramics prepared by conventional solid-state routes have been investigated. The V2O5were selected as liquid phase sintering aids to lower the sintering temperature of 9CWMS ceramics. A small amount of V2O5(0.25~1 wt%) were used for sintering aid and led to high densification at 1050°C. The dielectric properties of 9CWMS ceramics with V2O5additions are strongly dependent on the densification, the microstructure. As the amount of V2O5additives increased from 0.25 to 1.0 wt%, the dielectric constantsεrdecreased following the trend with density. The quality valuesQdecreased with the increase of V2O5amount for all sintering temperatures. The 0.25 wt% V2O5-doped 0.9CaWO4-0.1Mg2SiO4ceramicssintered at 1080°C for 2 h had the optimum dielectric properties: εr= 5.7;Q×f= 73000 (at 14 GHz).


2011 ◽  
Vol 412 ◽  
pp. 280-284
Author(s):  
Ru Zhong Zuo ◽  
Yang Lv ◽  
Yang Wu ◽  
Zhen Xing Yue

The effect of CaO-B2O3-SiO2 glass on the densification, microstructure and microwave dielectric properties of Ba4Nd9.33Ti18O54 ceramics was investigated in this work. It was found that the addition of a few amount of glass (≤2%) could effectively decrease the sintering temperature owing to the viscous sintering. However, locally porous structures were formed when overmuch glass was added because of enwrapped air bubbles and rapid grain growth. In addition, the amount of remaining glass after sintering could be decreased due to the re-crystallization of CaO-B2O3-SiO2 glass. Sol-gel derived Ba4Nd9.33Ti18O54 ceramics containing 2 wt% glass can be well densified at 950°C and exhibit good microwave dielectric properties of εr=68 and Q×f=7400 GHz.


2011 ◽  
Vol 01 (02) ◽  
pp. 209-213 ◽  
Author(s):  
S. GEORGE ◽  
V. K. SAJITH ◽  
M. T. SEBASTIAN ◽  
S. RAMAN ◽  
P. MOHANAN

The comparison of the low temperature sintering and the microwave dielectric properties of Li2MgSiO4 (LMS) ceramics prepared by citrate gel (CG) route and solid state (SS) ceramic route are discussed in this paper. The LMS prepared using CG route sintered at 1175°C/2 h has εr = 5.3 and tan δ = 1 × 10−3 at 9 GHz. The sintering temperature of LMS is lowered to 950°C with the addition of 5 wt% lithium magnesium zinc borosilicate glass and has εr = 5.6 and tan δ = 2 × 10-3 at 9 GHz. The amount of glass required to lower the sintering temperature of ceramics prepared using CG are slightly higher than that of SS ceramic route. The LMS ceramics prepared using SS ceramic route shows excellent microwave dielectric properties with low sintering temperature compared to CG route.


2012 ◽  
Vol 512-515 ◽  
pp. 1226-1230
Author(s):  
Qun Zeng ◽  
Yong Heng Zhou

The structure, microwave dielectric properties and low-temperature sintering of a new Li2O-Nb2O5-TiO2 system ceramic with the Li2O: Nb2O5: TiO2 mole ratio of 1.52: 0.36: 1.34 have been investigated in this study. The 1.52Li2O-0.36Nb2O5-1.34TiO2 (LNT) ceramic is composed of two phases, the “M-Phase” and Li2TiO3 solid solution (Li2TiO3ss) phase. This new microwave dielectric ceramic has low intrinsic sintering temperature ( ~ 1100 oC ) and good microwave dielectric properties of middle permittivity (εr ~38.6), high Q×f value up to 7712 GHz, and near zero τf value (~ 4.64 ppm/oC). In addition, the sintering temperature of the LNT ceramics could be lowered down effectively from 1100 oC to 900 oC by adding 1 wt.% B2O3. Good microwave dielectric properties of εr = 42.5, Q*f =6819 GHz and τf = 2.7 ppm/oC could be obtained at 900 oC, which indicate the ceramics would be promising candidates for low-temperature co-fired ceramics (LTCC) applications.


2010 ◽  
Vol 663-665 ◽  
pp. 1028-1031
Author(s):  
Yue Ming Li ◽  
Hua Zhang ◽  
Zhu Mei Wang ◽  
Yan Hong ◽  
Zong Yang Shen

The sintering behavior and microwave dielectric properties of the (Ca0.9375Sr0.0625)0.25(Li0.5Sm0.5)0.75TiO3 (CSLST) ceramics doped with different amounts of Li2O-B2O3-SiO2-CaO-Al2O3 (LBSCA) glass were investigated. The sintering temperature of the CSLST ceramics can be effectively reduced over 200oC due to the addition of LBSCA glass. For the 5 wt% LBSCA-doped CSLST ceramics, which are sintered at only 1000 oC for 5 h, show optimum microwave dielectric properties as follows: εr=84.74, Qf=2446 GHz and τf=-12.48 ppm/oC.


2011 ◽  
Vol 335-336 ◽  
pp. 956-959 ◽  
Author(s):  
Yong Jun Gu ◽  
Jin Liang Huang ◽  
Wei Hu ◽  
Qian Li ◽  
Li Hua Li ◽  
...  

The sintering behaviors and microwave dielectric properties of the Ca0.6La0.8/3TiO3-Li0.5Nd0.5TiO3 (abbreviated CLLNT) ceramics doped by small amounts of ZnO-B2O3-SiO2 glass were investigated in this paper. The adding of ZnO-B2O3-SiO2 glass improved the densifications of the CLLNT ceramics and the sintering temperature of the CLLNT ceramic had been efficiently lowered to 1050°C. Especially, the 8wt% ZnO-B2O3-SiO2 glass doped CLLNT ceramic sintered at 1050°C for 3 h has optimum microwave dielectric properties of Kr=89, Q×f=1445GHz, and TCF=11.4 ppm/°C and it should be a suitable candidate for LTCC applications.


2014 ◽  
Vol 602-603 ◽  
pp. 748-751 ◽  
Author(s):  
Xin Hui Zhao ◽  
Min Jia Wang ◽  
Qi Long Zhang ◽  
Hui Yang

(Ca0.9Mg0.1)SiO3ceramics possess a low dielectric constant and a highQfvalue, however, the densification temperature of (Ca0.9Mg0.1)SiO3ceramics is higher than 1280°C. In this paper, the effect of Li2CO3addition on sinterability and dielectric properties of (Ca0.9Mg0.1)SiO3ceramics were studied. The phase presence and surface morphology were determined by XRD and SEM techniques, respectively. CaSiO3and Ca2MgSi2O7phases were observed. With the addition of >2.0 wt% Li2CO3, the sintering temperature of (Ca0.9Mg0.1)SiO3ceramic was significantly lowered, reaching to 1070°C. (Ca0.9Mg0.1)SiO3ceramics with 4wt% Li2CO3sintered at 1070°C for 3 h shows excellent dielectric properties:εr=5.91,Qf= 15300GHz (at 10GHz).


2009 ◽  
Vol 66 ◽  
pp. 214-217
Author(s):  
Jian Mei Xu ◽  
Zhen Min Jin ◽  
Hui Juan Gao

Microwave dielectric ceramics with low sintering temperature were obtained by sol-coating method. The effect of glass additives on the sintering temperature and microwave dielectric properties of BaO–Nd2O3–TiO2 ceramics were investigated. The ceramics added with NBS glass have much higher quality factor Qf= 4658.9 GHz. The ceramics added with BBS glass have the highest dielectric constantεr=71.4 and lest temperature coefficient of resonant frequency τf =29.15×10-6/ °C. The ceramics added BBS glass are as follows:εr=58.58, Qf= 2986GHz, τf =29.15×10-6/ °C sintered at 1060°C where the ceramics can be co-fired with copper electrode.


Sign in / Sign up

Export Citation Format

Share Document