Pushover Analysis of Pile-Supported Bridge Piers

2013 ◽  
Vol 681 ◽  
pp. 234-239
Author(s):  
Chang Feng Wang ◽  
Yi Jun Bao

According to Japan Railway seismic design code, truss finite element model is established considering the pile components and foundation nonlinear finite element model in this paper, an analysis on the ultimate horizontal bearing capacity of bridge pile foundation of passenger dedicated line is made and the results of m-method calculation are compared. The analysis results show that: when horizontal force at the top of pier is larger, with the pile side soil horizontal and vertical force continuously into the plastic, the calculation results differ greatly with two seismic specification; the pier top level force-displacement skeleton curve considered pile-soil interaction is available in trilinear description, the analysis results can provide a theoretical basis for the seismic analysis of the pile foundation under rare earthquake.

2010 ◽  
Vol 456 ◽  
pp. 103-114
Author(s):  
Shi Ling Xing ◽  
Jian Shu Ye ◽  
Hang Sun

In order to use finite element software to complete the design or calculation of bridge multi-pile foundation, this paper discusses the finite element model (FEM) of a bridge multi-pile based on the theory and provisions in Code for Design of Ground Base and Foundation of Highway Bridges and Culverts (CDGBFHBC 2007) of china. For the FEM of a bridge-multi pile foundation, cap is regarded as a rigid body, piles are taken as beams, and boundary constraints are a series of horizontal springs and vertical springs. First, the formula of stiffness for horizontal springs and bottom vertical spring is derived according to elastic ground base theory and winkler hypotheses. Secondly, for the friction pile, the stiffness of vertical springs on piles side is derived basis of the principle of friction generated and simplified distribution of pile shaft resistance. Then, the FEM of multi-pile needs pay attention to three issues: the simulation of connections between piles and cap, elastic modulus needs discount, and the weight for pile underneath the ground line (or local scour line) needs calculate by half. Taking pile section bending moment often control the design and calculation of pile into account, this paper gives a simplified FEM of pile. Finally, an example is used to introduce the application of the FEM of bridge multi-pile foundation.


2014 ◽  
Vol 41 (10) ◽  
pp. 909-917 ◽  
Author(s):  
Michael Jolie ◽  
Ayman M. El Ansary ◽  
Ashraf A. El Damatty

Truncated conical vessels are commonly used as liquid containers in elevated tanks. Despite the widespread use of this type of structure worldwide, no direct code provisions are currently available covering its seismic analysis and design. The purpose of the current study is to assess the importance of considering the vertical component of ground accelerations when analyzing and designing this type of water-storage structure. The study is conducted using an equivalent mechanical model that estimates the normal forces that develop in the tank walls when subjected to vertical excitation. In addition, a three-dimensional finite element model has been developed by modeling the walls of the tank using shell elements. The finite element model has been employed to predict maximum membrane and overall meridional stresses due to both hydrodynamic and hydrostatic pressure distributions. Comparisons have been conducted to assess the significance of considering vertical excitation and to identify the magnification in meridional stresses due to bending effects associated with support conditions and large deformations.


Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 120
Author(s):  
Ilaria Capanna ◽  
Riccardo Cirella ◽  
Angelo Aloisio ◽  
Rocco Alaggio ◽  
Franco Di Fabio ◽  
...  

Masonry towers, located in seismic zones, are vulnerable and prone to damages up to compromise their stability. The scatter of data on the mechanical properties of masonry, geometry and boundary conditions determine a lack of building knowledge on their expected behaviour. Therefore the assessment of the seismic capacity represents a critical task. This paper contributes to the issue of seismic analysis of masonry towers, focusing a meaningful case study: the St.Silvestro belfry in L’Aquila, Italy. The tower, severely damaged by the 2009 earthquake sequence, underwent extensive restoration works, endeavoured to mitigate its vulnerability. The observed seismic damage, the performed no-destructive testing campaign and the accomplished rehabilitation measures are described in the paper. The authors appraised the actual seismic performances of the St.Silvestro belfry, reinforced by the last restoration works. At first, the Operational Modal Analysis (OMA) is carried out to enhance building knowledge. In a second step, a refined finite element model is calibrated on the results from OMA to seize the actual dynamic response. Ultimately, by using the updated finite element model, the authors estimate the fragility curves in terms of peak ground acceleration using truncated incremental dynamic analyses.


2011 ◽  
Vol 368-373 ◽  
pp. 211-214 ◽  
Author(s):  
Zhen Shan Wang ◽  
Ming Zhou Su ◽  
An Liang Song ◽  
Zhen Pang ◽  
Lin Shen

To study on the failure model, ductility, energy dissipation capacity, structural displacement, and stiffness of the portal frame structures on the effect of earthquake force, a pseudo-static experiment with a 1/3 scaled model has been completed. Based on the test result, though the ductility and the energy consumption capacity of the structure are poor, the requirement on aseismatic bearing capacity is satisfied, because the structure suffers the smaller seismic force as the deadweight of structure is light. Built up a finite element model according to the test specimen, then performed finite element analysis, the results showed that the finite element model can be used for seismic analysis of the portal frame.


Sign in / Sign up

Export Citation Format

Share Document