A Two-Grid Method of Nonconforming Element Based on the Shifted-Inverse Power Method for the Steklov Eigenvalue Problem

2013 ◽  
Vol 694-697 ◽  
pp. 2918-2921
Author(s):  
Hai Bi

This paper establishes a new kind of two-grid discretization scheme of nonconforming Crouzeix-Raviart element based on the shifted-inverse power method for the Steklov eigenvalue problem. The error estimates are provided from the work of Yang and Bi (SIAM J. Numer. Anal., 49, pp.1602-1624, 2011). Finally, numerical experiments are reported to illustrate the high efficiency of the two-grid discretization scheme proposed in this paper.

2012 ◽  
Vol 557-559 ◽  
pp. 2087-2091
Author(s):  
Chao Xia ◽  
Yi Du Yang ◽  
Hai Bi

On the basis of Yang and Bi’s work (SIAM J Numer Anal 49, p.1602-1624), this paper discusses a discretization scheme for a sort of Steklov eigenvalue problem and proves the high effiency of the scheme. With the scheme, the solution of an eigenvalue problem on a fine grid is reduced to the solution of an eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. And the resulting solution can maintain an asymptotically optimal accuracy. Finally, the numerical results are provided to support the theoretical analysis..


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Hai Bi ◽  
Yidu Yang

This paper discusses efficient numerical methods for the Steklov eigenvalue problem and establishes a new multiscale discretization scheme and an adaptive algorithm based on the Rayleigh quotient iterative method. The efficiency of these schemes is analyzed theoretically, and the constants appeared in the error estimates are also analyzed elaborately. Finally, numerical experiments are provided to support the theory.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Belhadj Karim ◽  
Abdellah Zerouali ◽  
Omar Chakrone

AbstractUsing the Ljusternik–Schnirelmann principle and a new variational technique, we prove that the following Steklov eigenvalue problem has infinitely many positive eigenvalue sequences:\left\{\begin{aligned} &\displaystyle\operatorname{div}(a(x,\nabla u))=0&&% \displaystyle\phantom{}\text{in }\Omega,\\ &\displaystyle a(x,\nabla u)\cdot\nu=\lambda m(x)|u|^{p(x)-2}u&&\displaystyle% \phantom{}\text{on }\partial\Omega,\end{aligned}\right.where {\Omega\subset\mathbb{R}^{N}}{(N\geq 2)} is a bounded domain of smooth boundary {\partial\Omega} and ν is the outward unit normal vector on {\partial\Omega}. The functions {m\in L^{\infty}(\partial\Omega)}, {p\colon\overline{\Omega}\mapsto\mathbb{R}} and {a\colon\overline{\Omega}\times\mathbb{R}^{N}\mapsto\mathbb{R}^{N}} satisfy appropriate conditions.


2019 ◽  
Vol 71 (2) ◽  
pp. 417-435
Author(s):  
Mikhail A. Karpukhin

AbstractIn this paper we study spectral properties of the Dirichlet-to-Neumann map on differential forms obtained by a slight modification of the definition due to Belishev and Sharafutdinov. The resulting operator $\unicode[STIX]{x039B}$ is shown to be self-adjoint on the subspace of coclosed forms and to have purely discrete spectrum there. We investigate properties of eigenvalues of $\unicode[STIX]{x039B}$ and prove a Hersch–Payne–Schiffer type inequality relating products of those eigenvalues to eigenvalues of the Hodge Laplacian on the boundary. Moreover, non-trivial eigenvalues of $\unicode[STIX]{x039B}$ are always at least as large as eigenvalues of the Dirichlet-to-Neumann map defined by Raulot and Savo. Finally, we remark that a particular case of $p$-forms on the boundary of a $2p+2$-dimensional manifold shares many important properties with the classical Steklov eigenvalue problem on surfaces.


2019 ◽  
Vol 38 (4) ◽  
pp. 219-133
Author(s):  
Abdellah Zerouali ◽  
Belhadj Karim ◽  
Omar Chakrone ◽  
Abdelmajid Boukhsas

In the presentp aper, we study the existence and non-existence results of a positive solution for the Steklov eigenvalue problem driven by nonhomogeneous operator $(p,q)$-Laplacian with indefinite weights. We also prove that in the case where $\mu>0$ and with $1<q<p<\infty$ the results are completely different from those for the usua lSteklov eigenvalue problem involving the $p$-Laplacian with indefinite weight, which is retrieved when $\mu=0$. Precisely, we show that when $\mu>0$ there exists an interval of principal eigenvalues for our Steklov eigenvalue problem.


Sign in / Sign up

Export Citation Format

Share Document