A Collaborative Approach for Multidisciplinary Systems Reliability Design and Optimization

2013 ◽  
Vol 694-697 ◽  
pp. 911-914 ◽  
Author(s):  
Jun Zhang ◽  
Bing Zhang

In order to improve the efficiency and robustness of reliability-based multidisciplinary design optimization (RBMDO), a new collaborative strategy (named C-RBMDO) which integrates performance measure approach (PMA) and concurrent subspace optimization strategy (CSSO) is proposed. Both the mathematical model and optimization procedure are put forward. The traditional triple-level nested flowchart of RBMDO is decoupled with the sequential optimization and reliability assessment (SORA). The deterministic multidisciplinary design optimization and the multidisciplinary reliability analysis are executed by CSSO and PMA respectively. Finally, the proposed method is verified through the design example of gear transmission.

2011 ◽  
Vol 418-420 ◽  
pp. 411-414 ◽  
Author(s):  
Rong Gang Yu ◽  
Jun Zhang ◽  
Bing Zhang

To tackle the computing efficiency and robustness problems caused by the reliability index approach (RIA) in reliability-based multidisciplinary design optimization (RBMDO), a new performance measure approach-based method for RBMDO is proposed. Meanwhile, the traditional triple-level nested flowchart of RBMDO is decoupled through the main idea of sequential optimization and reliability assessment (SORA). Both deterministic multidisciplinary design optimization and the multidisciplinary reliability analysis are executed by collaborative optimization (CO). Finally, the proposed method is verified through the design example of gear transmission.


2016 ◽  
Vol 138 (11) ◽  
Author(s):  
Tingting Xia ◽  
Mian Li ◽  
Jianhua Zhou

One real challenge for multidisciplinary design optimization (MDO) problems to gain a robust solution is the propagation of uncertainty from one discipline to another. Most existing methods only consider an MDO problem in the deterministic manner or find a solution which is robust for a single-disciplinary optimization problem. These rare methods for solving MDO problems under uncertainty are usually computationally expensive. This paper proposes a robust sequential MDO (RS-MDO) approach based on a sequential MDO (S-MDO) framework. First, a robust solution is obtained by giving each discipline full autonomy to perform optimization without considering other disciplines. A tolerance range is specified for each coupling variable to take care of uncertainty propagation in the coupled system. Then the obtained robust extreme points of global variables and coupling variables are dispatched into subsystems to perform robust optimization (RO) sequentially. Additional constraints are added in each subsystem to keep the consistency and to guarantee a robust solution. To find a solution with such strict constraints, genetic algorithm (GA) is used as a solver in each optimization stage. The proposed RS-MDO can save significant amount of computational efforts by using the sequential optimization procedure. Since all iterations in the sequential optimization stage can be processed in parallel, this robust MDO approach can be more time-saving. Numerical and engineering examples are provided to demonstrate the availability and effectiveness of the proposed approach.


Author(s):  
Xudong Zhang ◽  
Hong-Zhong Huang ◽  
Shengkui Zeng ◽  
Zhili Wang

Reliability Based Multidisciplinary Design Optimization (RBMDO) has received increasing attention to reach high reliability and safety in complex and coupled systems. In early design of such systems, however, information is often not sufficient to construct the precise probabilistic distributions required by the RBMDO and consequently RBMDO can not be carried out effectively. The present work proposes a method of Possibility Based Multidisciplinary Design Optimization (PBMDO) within the framework of the Sequential Optimization and Reliability Assessment (PBMDO-SORA). The proposed method enables designers to solve MDO problems without sufficient information on the uncertainties associated with variables, and also to efficiently decrease the computational demand. The efficiency of the proposed method is illustrated with an engineering design.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Debiao Meng ◽  
Yan-Feng Li ◽  
Hong-Zhong Huang ◽  
Zhonglai Wang ◽  
Yu Liu

The Monte Carlo simulation (MCS) can provide high reliability evaluation accuracy. However, the efficiency of the crude MCS is quite low, in large part because it is computationally expensive to evaluate a very small failure probability. In this paper, a subset simulation-based reliability analysis (SSRA) approach is combined with multidisciplinary design optimization (MDO) to improve the computational efficiency in reliability-based MDO (RBMDO) problems. Furthermore, the sequential optimization and reliability assessment (SORA) approach is utilized to decouple an RBMDO problem into a sequential of deterministic MDO and reliability evaluation problems. The formula of MDO with SSRA within the framework of SORA is proposed to solve a design optimization problem of a hydraulic transmission mechanism.


Author(s):  
Debiao Meng ◽  
Hong-Zhong Huang ◽  
Zhonglai Wang ◽  
Xiaoling Zhang ◽  
Yu Liu

The traditional Monte Carlo Simulation (MCS) approach can provide high reliability analysis accuracy, however, with low computational efficiency. Especially, it is computationally expensive to evaluate a very small failure probability. In this paper, a Subset Simulation-based Reliability Analysis (SSRA) approach is combined with the Multidisciplinary Design Optimization (MDO) to improve the computational efficiency in the Reliability based Multidisciplinary Design Optimization (RBMDO) problems. Furthermore, the Sequential Optimization and Reliability Assessment (SORA) approach is utilized to decouple the RBMDO into MDO and reliability analysis. The formula of MDO with SSRA within the framework of SORA (MDO-SSRA-SORA) is proposed to solve the design optimization problem of hydraulic transmission mechanism.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Huanwei Xu ◽  
Xin Wang ◽  
Wei Li ◽  
Mufeng Li ◽  
Suichuan Zhang ◽  
...  

Complex mechanical system is usually composed of several subsystems, which are often coupled with each other. Reliability-based multidisciplinary design optimization (RBMDO) is an efficient method to design such complex system under uncertainties. However, the present RBMDO methods ignored the correlations between uncertainties. In this paper, through combining the ellipsoidal set theory and first-order reliability method (FORM) for multidisciplinary design optimization (MDO), characteristics of correlated uncertainties are investigated. Furthermore, to improve computational efficiency, the sequential optimization and reliability assessment (SORA) strategy is utilized to obtain the optimization result. Both a mathematical example and a case study of an engineering system are provided to illustrate the feasibility and validity of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document