The Swarm Intelligence Optimization Algorithm and its Application

2013 ◽  
Vol 711 ◽  
pp. 659-664
Author(s):  
Li Shan Li

In the article, three kinds of swarm intelligence optimization algorithm are discussed including the ant colony optimization (ACO) algorithm, the particle swarm optimization (PSO) algorithm and the shuffled frog leaping algorithm (SFLA). The principle, development and application of each algorithm is introduced. Finally, an example of TSP is used to test the performance of ACO.

Author(s):  
Chaman Yadav ◽  
Prabha Singh ◽  
Jaya Mishra ◽  
Kushal Tiwari ◽  
Shashank Singh

This paper presents the concepts of three evolutionary algorithms i.e, ant colony optimization and particle swarm optimization algorithm. An evolutionary algorithm copies the way how evolution occurs in the nature. There are various types of evolutionary algorithms. This paper focuses on ACO and PSO algorithms. ACO provides solution to various optimization problems. It follows the principle of survival of the fittest. Various problems such as knapsack problem, TSP(travelling salesman problem) can be solved using genetic algorithm. Ant colony optimization is a heuristic algorithm which follows the behaviour of ants i.e., the way ants seek food in their environment by starting from their nest. Particle swarm optimization algorithm (PSO) is also an optimization algorithm which also uses a method of searching using some heuristics.


2020 ◽  
Vol 12 (7) ◽  
pp. 918-923
Author(s):  
Aditi Majumdar ◽  
Bharadwaj Nanda

Use of swarm intelligence has proliferated over previous couple of years for damage assessment in large and complex structures using vibration data. Available literatures shows ‘ant colony optimization’ (ACO) and ‘particle swarm optimization’ (PSO) are predominantly used for solving complex engineering problems including damage identification and quantification problems. The time requirement and accuracy of the vibration based damage identification algorithms depends on early exploration and late exploitation capabilities of soft computing techniques. However, there are not any literature available comparing algorithms on these bases. In the current study, an inverse problem is constructed using the natural frequency changes which is then solved using ACO and PSO algorithms. The algorithm is run for identification of single and multiple damages in simple support and cantilever beam structures. It's found that, both ACO and PSO based algorithms are capable of detecting and quantifying the damage accurately within the limited number of iterations. However, ACO based algorithm by virtue of its good exploration capability is able to identify near optimal region faster than PSO based algorithm, whereas PSO algorithm has good exploitation capability and hence able to provide better damage quantification than ACO algorithm at latter stages of iteration. Further, PSO based algorithm takes less time to reach at required accuracy level. It is also observed that, the time required for these algorithms are independent of numbers of damage and support conditions.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012075
Author(s):  
Kai Zheng ◽  
Rui Zhang ◽  
Zhen-Wei Zhu ◽  
Hua-Dong Zhao

Abstract To solve the operation sequencing problem in CAPP that is a difficult problem, combining the idea of genetic algorithm, an GA-Jaya algorithm is proposed to minimize the total cost. In the GA-Jaya, the population is initialized according to the procedure priority adjacency matrix which makes the population all meet the process priority relationship. Mutation iteration operator and two kinds of crossover iteration operator are designed for process sequence and processing resource evolution. The GA-Jaya algorithm is applied to a typical case, and compared with the existing genetic algorithm, particle swarm optimization algorithm and ant colony optimization algorithm. The results show that the average quality of the solution obtained by the GA-Jaya algorithm is better than the existing genetic algorithm, particle swarm optimization algorithm and ant colony optimization algorithm.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Kai Lei ◽  
Xiaoning Zhu ◽  
Jianfei Hou ◽  
Wencheng Huang

In this paper, some basic concepts of multimodal transportation and swarm intelligence were described and reviewed and analyzed related literatures of multimodal transportation scheme decision and swarm intelligence methods application areas. Then, this paper established a multimodal transportation scheme decision optimization mathematical model based on transportation costs, transportation time, and transportation risks, explained relevant parameters and the constraints of the model in detail, and used the weight coefficient to transform the multiobjective optimization problems into a single objective optimization transportation scheme decision problem. Then, this paper is proposed by combining particle swarm optimization algorithm and ant colony algorithm (PSACO) to solve the combinatorial optimization problem of multimodal transportation scheme decision for the first time; this algorithm effectively combines the advantages of particle swarm optimization algorithm and ant colony algorithm. The solution shows that the PSACO algorithm has two algorithms’ advantages and makes up their own problems; PSACO algorithm is better than ant colony algorithm in time efficiency and its accuracy is better than that of the particle swarm optimization algorithm, which is proved to be an effective heuristic algorithm to solve the problem about multimodal transportation scheme decision, and it can provide economical, reasonable, and safe transportation plan reference for the transportation decision makers.


Sign in / Sign up

Export Citation Format

Share Document