Fast Static Security Analysis of Day-Ahead Generation Scheduling 96 Period Cases Adapting to Large Power System

2013 ◽  
Vol 732-733 ◽  
pp. 669-676
Author(s):  
Feng Li ◽  
Zhi Hua Wang ◽  
Hu Cheng Li

It’s important to improve the speed of security analysis of 96 period generation scheduling cases. Based on the characteristics of 96 period cases’ security analysis, four technical proposals were presented. They were following as fast scanning and analysis technology based on DC power flow screening, multiple thread parallel computing adapted to a multiple contingency case, multiple process parallel computing technology adapted to multiple period cases. Detailed test examples showed that the proposed methods could contribute much to fast security analysis of 96 period cases’ day-ahead dispatching schedule.

2012 ◽  
Vol 614-615 ◽  
pp. 900-906
Author(s):  
Jun Liu ◽  
Ling Ling Pan ◽  
Yi Jun Yu ◽  
Shu Hai Feng ◽  
Feng Li ◽  
...  

In this paper, a calculation method of static security analysis based on section topology relation is proposed. When topological structure of current data section is the same as that of the basecase section, it fully utilizes the factor tables of Jacobian matrix, and inverse matrix information of the basecase data section in rapid filtration of DC power flow. On the contrary, If topology changes compared with the basecase section, it adopts substation partial topological analysis technology as well as the method of partial factor table correction to increase the speed of calculation. Case studies with a practical power system indicate that the proposed method is correct and reasonable.


2014 ◽  
Vol 1070-1072 ◽  
pp. 1511-1515
Author(s):  
Chuan Cheng Zhang ◽  
Cui Hui Yan ◽  
Sai Dai ◽  
Dan Xu ◽  
Yi Zhu ◽  
...  

Monthly maintenance schedule has an important guiding significance to day ahead maintenance arrangement. However, the current management of monthly maintenance schedule is short of quantitative analysis methods. Consequently it can’t effectively take the security risk that may exist under monthly maintenance schedule. This paper presents a static security checking method for monthly maintenance schedule. First, established the monthly power grid network model based on the realtime model and device state changes, including the commissioning and decommissioning devices and maintenance devices. Next, the month-contract energy was decomposed to every day and every hour, then combined with monthly load forecast and maintenance schedule, the power system typical operation modes were generated automatically. Finally, quantitative assessment of monthly maintenance schedule was completed by power flow calculation, security analysis and evaluation indexes, including load supply adequacy and equivalent generation capacity loss. This method is instructive for monthly maintenance arrangement and its feasibility is proved by practical application.


2014 ◽  
Vol 672-674 ◽  
pp. 1314-1317
Author(s):  
Xing Xu ◽  
Hui Ting Chen ◽  
Lei Feng

Nowadays the disadvantages of large power grids are becoming more and more conspicous. Scholars have come to realize the importance of micro-grids. As the supplement of large power grids, the instability of micro-grids has gathered a huge amount of attention. This paper proposes a solution of the instability problem of micro-grids based on the research on AC-DC power flow. The main idea is to add AC power flow and storage power, which features stable voltage, stable current and stable output, in the micro-grids, thus solving voltage and current fluctuation and other instability problems in micro-grids.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1658
Author(s):  
Leandro Almeida Vasconcelos ◽  
João Alberto Passos Filho ◽  
André Luis Marques Marcato ◽  
Giovani Santiago Junqueira

The use of Direct Current (DC) transmission links in power systems is increasing continuously. Thus, it is important to develop new techniques to model the inclusion of these devices in network analysis, in order to allow studies of the operation and expansion planning of large-scale electric power systems. In this context, the main objective of this paper is to present a new methodology for a simultaneous AC-DC power flow for a multi-terminal High Voltage Direct Current (HVDC) system with a generic representation of the DC network. The proposed methodology is based on a full Newton formulation for solving the AC-DC power flow problem. Equations representing the converters and steady-state control strategies are included in a power flow problem formulation, resulting in an expanded Jacobian matrix of the Newton method. Some results are presented based on HVDC test systems to confirm the effectiveness of the proposed approach.


2016 ◽  
Vol 31 (4) ◽  
pp. 1719-1727 ◽  
Author(s):  
Wu Chen ◽  
Xu Zhu ◽  
Liangzhong Yao ◽  
Guangfu Ning ◽  
Yan Li ◽  
...  

Author(s):  
Ashu Verma ◽  
Pradeep R. Bijwe ◽  
Bijaya Ketan Panigrahi

Transmission network expansion planning is a very critical problem due to not only the huge investment cost involved, but also the associated security issues. Any long range planning problem is confronted with the challenge of non-statistical uncertainty in the data. Although large number of papers have been published in this area, the efforts to tackle the above mentioned security and uncertainty issues have been relatively very few, due to the formidable complexity involved. This paper tries to bridge this gap by proposing a technique to tackle these problems. Boundary DC power flow is used to ascertain the worst power flows on the lines. A simple basic binary Genetic algorithm is used to solve the optimization problem as an illustration. Results for two sample test systems have been obtained to demonstrate the potential of the proposed method.


2001 ◽  
Vol 16 (4) ◽  
pp. 776-781
Author(s):  
Fan Li ◽  
Baohua Li ◽  
Xujun Zheng

2021 ◽  
Author(s):  
Mohammadreza Vatani

AC-DC power systems have been operating more than sixty years. Nonlinear bus-wise power balance equations provide accurate model of AC-DC power systems. However, optimization tools for planning and operation require linear version, even if approximate, for creating tractable algorithms, considering modern elements such as DERs (distributed energy resources). Hitherto, linear models of only AC power systems are available, which coincidentally are called DC power flow. To address this drawback, linear bus-wise power balance equations are developed for AC-DC power systems and presented. As a first contribution, while AC and DC lines are represented by susceptance and conductance elements, AC-DC power converters are represented by a proposed linear relationship. As a second contribution, a three-step linear AC-DC power flow method is proposed. The first step solves the whole network considering it as a linear AC network, yielding bus phase angles at all busses. The second step computes attributes of the proposed linear model of all AC-DC power converters. The third step solves the linear model of the AC-DC system including converters, yielding bus phase angles at AC busses and voltage magnitudes at DC busses. The benefit of the proposed linear power flow model of AC-DC power system, while an approximation of the nonlinear model, enables representation of bus-wise power balance of AC-DC systems in complex planning and operational optimization formulations and hence holds the promise of phenomenal progress. The proposed linear AC-DC power systems is tested on numerous IEEE test systems and demonstrated to be fast, reliable, and consistent.


Sign in / Sign up

Export Citation Format

Share Document