Global Robust Exponential Stability of Interval Cohen-Grossberg Neural Network with Time Varying Delays

2013 ◽  
Vol 756-759 ◽  
pp. 3884-3888 ◽  
Author(s):  
Rui Zhang ◽  
Jian Liu ◽  
Meng Xin Li ◽  
Mei Ju Liu

In this paper, the global robust exponential stability is discussed for interval Cohen-Grossgerg neural network with time varying delays. On the basis of the linear matrix inequalities (LMIs) technique, and Lyapunov functional method combined with the Bellman inequality and Jensen inequality technique, we have obtained the main condition to ensure the global robust exponential stability of the equilibrium point for this system. The obtained stability criterion is dependent on the upper bound of time varying delays. The proposed result is less restrictive, and suitable of the cases of slow or fast time varying delays, easier to check in practice. Remarks are made with other previous works to show the superiority of the obtained result, and the simulation example is used to demonstrate the effectiveness of our result.

2012 ◽  
Vol 182-183 ◽  
pp. 1135-1140 ◽  
Author(s):  
Rui Zhang ◽  
Chang Tao Wang

In this paper, the global robust exponential stability is discussed for Cohen-Grossgerg neural network with parameter uncertainties and time varying delays. On the basis of the linear matrix inequalities (LMIs) technique, and Lyapunov functional method combined with the Bellman inequality and Jensen inequality technique, we have obtained the main condition to ensure the global robust exponential stability of the equilibrium point for this system. The proposed result is less restrictive, easier to check in practice. Remarks are made with other previous works to show the superiority of the obtained result, and the simulation example is used to demonstrate the effectiveness of our result.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Yanke Du ◽  
Rui Xu

A class of interval Cohen-Grossberg neural networks with time-varying delays and infinite distributed delays is investigated. By employing H-matrix and M-matrix theory, homeomorphism techniques, Lyapunov functional method, and linear matrix inequality approach, sufficient conditions are established for the existence, uniqueness, and global robust exponential stability of the equilibrium point and the periodic solution to the neural networks. Our results improve some previously published ones. Finally, numerical examples are given to illustrate the feasibility of the theoretical results and further to exhibit that there is a characteristic sequence of bifurcations leading to a chaotic dynamics, which implies that the system admits rich and complex dynamics.


2012 ◽  
Vol 546-547 ◽  
pp. 772-777 ◽  
Author(s):  
Rui Zhang ◽  
Jian Liu ◽  
Ying Zhang ◽  
Chang Tao Wang

In this paper, the global robust exponential stability is discussed for discrete-time bidirectional associative memory (BAM) neural networks with time varying delays. By the linear matrix inequality (LMI) technique and discrete Lyapunov functional combined with inequality techniques, a new global exponential stability criterion of the equilibrium point is obtained for this system. The proposed result is less restrictive, and easier to check in practice. Remarks are made with other previous works to show the superiority of the obtained results, and the simulation example is used to demonstrate the effectiveness of our result.


Computation ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 62
Author(s):  
Charuwat Chantawat ◽  
Thongchai Botmart ◽  
Rattaporn Supama ◽  
Wajaree Weera ◽  
Sakda Noinang

This paper is concerned the problem of robust H∞ control for uncertain neural networks with mixed time-varying delays comprising different interval and distributed time-varying delays via hybrid feedback control. The interval and distributed time-varying delays are not necessary to be differentiable. The main purpose of this research is to estimate robust exponential stability of uncertain neural network with H∞ performance attenuation level γ. The key features of the approach include the introduction of a new Lyapunov–Krasovskii functional (LKF) with triple integral terms, the employment of a tighter bounding technique, some slack matrices and newly introduced convex combination condition in the calculation, improved delay-dependent sufficient conditions for the robust H∞ control with exponential stability of the system are obtained in terms of linear matrix inequalities (LMIs). The results of this paper complement the previously known ones. Finally, a numerical example is presented to show the effectiveness of the proposed methods.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Yanke Du ◽  
Rui Xu

A class of interval neural networks with time-varying delays and distributed delays is investigated. By employingH-matrix andM-matrix theory, homeomorphism techniques, Lyapunov functional method, and linear matrix inequality approach, sufficient conditions for the existence, uniqueness, and global robust exponential stability of the equilibrium point to the neural networks are established and some previously published results are improved and generalized. Finally, some numerical examples are given to illustrate the effectiveness of the theoretical results.


2007 ◽  
Vol 17 (03) ◽  
pp. 207-218 ◽  
Author(s):  
BAOYONG ZHANG ◽  
SHENGYUAN XU ◽  
YONGMIN LI

This paper considers the problem of robust exponential stability for a class of recurrent neural networks with time-varying delays and parameter uncertainties. The time delays are not necessarily differentiable and the uncertainties are assumed to be time-varying but norm-bounded. Sufficient conditions, which guarantee that the concerned uncertain delayed neural network is robustly, globally, exponentially stable for all admissible parameter uncertainties, are obtained under a weak assumption on the neuron activation functions. These conditions are dependent on the size of the time delay and expressed in terms of linear matrix inequalities. Numerical examples are provided to demonstrate the effectiveness and less conservatism of the proposed stability results.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Kanit Mukdasai

This paper investigates the problem of robust exponential stability for uncertain linear-parameter dependent (LPD) discrete-time system with delay. The delay is of an interval type, which means that both lower and upper bounds for the time-varying delay are available. The uncertainty under consideration is norm-bounded uncertainty. Based on combination of the linear matrix inequality (LMI) technique and the use of suitable Lyapunov-Krasovskii functional, new sufficient conditions for the robust exponential stability are obtained in terms of LMI. Numerical examples are given to demonstrate the effectiveness and less conservativeness of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document