scholarly journals Hybrid Feedback Control for Exponential Stability and Robust H∞ Control of a Class of Uncertain Neural Network with Mixed Interval and Distributed Time-Varying Delays

Computation ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 62
Author(s):  
Charuwat Chantawat ◽  
Thongchai Botmart ◽  
Rattaporn Supama ◽  
Wajaree Weera ◽  
Sakda Noinang

This paper is concerned the problem of robust H∞ control for uncertain neural networks with mixed time-varying delays comprising different interval and distributed time-varying delays via hybrid feedback control. The interval and distributed time-varying delays are not necessary to be differentiable. The main purpose of this research is to estimate robust exponential stability of uncertain neural network with H∞ performance attenuation level γ. The key features of the approach include the introduction of a new Lyapunov–Krasovskii functional (LKF) with triple integral terms, the employment of a tighter bounding technique, some slack matrices and newly introduced convex combination condition in the calculation, improved delay-dependent sufficient conditions for the robust H∞ control with exponential stability of the system are obtained in terms of linear matrix inequalities (LMIs). The results of this paper complement the previously known ones. Finally, a numerical example is presented to show the effectiveness of the proposed methods.

2007 ◽  
Vol 17 (03) ◽  
pp. 207-218 ◽  
Author(s):  
BAOYONG ZHANG ◽  
SHENGYUAN XU ◽  
YONGMIN LI

This paper considers the problem of robust exponential stability for a class of recurrent neural networks with time-varying delays and parameter uncertainties. The time delays are not necessarily differentiable and the uncertainties are assumed to be time-varying but norm-bounded. Sufficient conditions, which guarantee that the concerned uncertain delayed neural network is robustly, globally, exponentially stable for all admissible parameter uncertainties, are obtained under a weak assumption on the neuron activation functions. These conditions are dependent on the size of the time delay and expressed in terms of linear matrix inequalities. Numerical examples are provided to demonstrate the effectiveness and less conservatism of the proposed stability results.


2009 ◽  
Vol 19 (04) ◽  
pp. 269-283 ◽  
Author(s):  
TAO LI ◽  
AIGUO SONG ◽  
SHUMIN FEI

This paper investigates robust exponential stability for discrete-time recurrent neural networks with both time-varying delay (0 ≤ τm ≤ τ(k) ≤ τM) and distributed one. Through partitioning delay intervals [0,τm] and [τm,τM], respectively, and choosing an augmented Lyapunov-Krasovskii functional, the delay-dependent sufficient conditions are obtained by using free-weighting matrix and convex combination methods. These criteria are presented in terms of linear matrix inequalities (LMIs) and their feasibility can be easily checked by resorting to LMI in Matlab Toolbox in Ref. 1. The activation functions are not required to be differentiable or strictly monotonic, which generalizes those earlier forms. As an extension, we further consider the robust stability of discrete-time delayed Cohen-Grossberg neural networks. Finally, the effectiveness of the proposed results is further illustrated by three numerical examples in comparison with the reported ones.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Kanit Mukdasai

This paper investigates the problem of robust exponential stability for uncertain linear-parameter dependent (LPD) discrete-time system with delay. The delay is of an interval type, which means that both lower and upper bounds for the time-varying delay are available. The uncertainty under consideration is norm-bounded uncertainty. Based on combination of the linear matrix inequality (LMI) technique and the use of suitable Lyapunov-Krasovskii functional, new sufficient conditions for the robust exponential stability are obtained in terms of LMI. Numerical examples are given to demonstrate the effectiveness and less conservativeness of the proposed methods.


2012 ◽  
Vol 182-183 ◽  
pp. 1135-1140 ◽  
Author(s):  
Rui Zhang ◽  
Chang Tao Wang

In this paper, the global robust exponential stability is discussed for Cohen-Grossgerg neural network with parameter uncertainties and time varying delays. On the basis of the linear matrix inequalities (LMIs) technique, and Lyapunov functional method combined with the Bellman inequality and Jensen inequality technique, we have obtained the main condition to ensure the global robust exponential stability of the equilibrium point for this system. The proposed result is less restrictive, easier to check in practice. Remarks are made with other previous works to show the superiority of the obtained result, and the simulation example is used to demonstrate the effectiveness of our result.


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Weihua Mao ◽  
Feiqi Deng ◽  
Anhua Wan

This paper discusses the mean-square exponential stability of uncertain neutral linear stochastic systems with interval time-varying delays. A new augmented Lyapunov-Krasovskii functional (LKF) has been constructed to derive improved delay-dependent robust mean-square exponential stability criteria, which are forms of linear matrix inequalities (LMIs). By free-weight matrices method, the usual restriction that the stability conditions only bear slow-varying derivative of the delay is removed. Finally, numerical examples are provided to illustrate the effectiveness of the proposed method.


2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Sirada Pinjai ◽  
Kanit Mukdasai

We investigate the problem of robust exponential stability for uncertain neutral systems with discrete and distributed time-varying delays and nonlinear perturbations. Based on the combination of descriptor model transformation, decomposition technique of coefficient matrix, and utilization of zero equation and new Lyapunov functional, sufficient conditions for robust exponential stability are obtained and formulated in terms of linear matrix inequalities (LMIs). The new stability conditions are less conservative and more general than some existing results.


2013 ◽  
Vol 756-759 ◽  
pp. 3884-3888 ◽  
Author(s):  
Rui Zhang ◽  
Jian Liu ◽  
Meng Xin Li ◽  
Mei Ju Liu

In this paper, the global robust exponential stability is discussed for interval Cohen-Grossgerg neural network with time varying delays. On the basis of the linear matrix inequalities (LMIs) technique, and Lyapunov functional method combined with the Bellman inequality and Jensen inequality technique, we have obtained the main condition to ensure the global robust exponential stability of the equilibrium point for this system. The obtained stability criterion is dependent on the upper bound of time varying delays. The proposed result is less restrictive, and suitable of the cases of slow or fast time varying delays, easier to check in practice. Remarks are made with other previous works to show the superiority of the obtained result, and the simulation example is used to demonstrate the effectiveness of our result.


2009 ◽  
Vol 06 (01) ◽  
pp. 61-71 ◽  
Author(s):  
HUAICHENG YAN ◽  
MAX Q.-H. MENG ◽  
XINHAN HUANG ◽  
HAO ZHANG

In this paper, the delay-dependent robust exponential mean-square stability analysis problem is considered for a class of uncertain stochastic systems with time-varying delay and nonlinear perturbations. Some sufficient conditions on delay-dependent robust exponential stability in the mean square are established in terms of linear matrix inequalities (LMIs) by exploiting a novel Lyapunov–Krasovskii functional and by making use of zero equations methods. These developed results indicate less conservatism than the existing ones due to the introduction of some free weighting matrices which can be selected properly. The new delay-dependent stability criteria are expressed as a set of LMIs, which can be readily solved by using standard numerical software. Numerical examples are provided to demonstrate the effectiveness and the applicability of the proposed criteria.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2473
Author(s):  
Hamid Ghadiri ◽  
Hamed Khodadadi ◽  
Saleh Mobayen ◽  
Jihad H. Asad ◽  
Thaned Rojsiraphisal ◽  
...  

In this study, the challenges of the controller design of a class of Uncertain Switched Neutral Systems (USNSs) in the presence of discrete, neutral, and time-varying delays are considered by using a robust observer-based control technique. The cases where the uncertainties are normbounded and time-varying are emphasized in this research. The adopted control approach reduces the prescribed level of disturbance input on the controlled output in the closed-loop form and the robust exponential stability of the control system. The challenge of parametric uncertainty in USNSs is solved by designing a robust output observer-based control and applying the Yakubovich lemma. Since the separation principle does not generally hold in this research, the controller and observer cannot be designed separately, sufficient conditions are suggested. These conditions are composed of applying the average dwell time approach and piecewise Lyapunov function technique in terms of linear matrix inequalities, which guarantees robust exponential stability of the observer-based output controller. Finally, two examples are given to determine the effectiveness of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Yanwei Tian ◽  
Baofeng Chen

The exponential stability is investigated for neutral stochastic differential equations with time-varying delays. Based on the Lyapunov stability theory and linear matrix inequalities (LMIs) technique, some delay-dependent criteria are established to guarantee the exponential stability in almost sure sense. Finally a numerical example is provided to illustrate the feasibility of the result.


Sign in / Sign up

Export Citation Format

Share Document