Finite Element Analysis of High-Strength Concrete Flat Columns with Diagonal Reinforcements

2013 ◽  
Vol 791-793 ◽  
pp. 514-518
Author(s):  
Tuo Lei ◽  
Jiang Qian ◽  
Qing Biao Tian

Based on the reversed cyclic loading test of three 1:4 high-strength concrete flat columns, the computer program ABAQUS was used to simulate behaviors of the specimens. Concrete in the column was modeled using the damage plasticity material model, and a uniaxial steel model with combined isotropic and kinematic hardening properties was used to simulate the behavior of the reinforcement. The establishment of the finite element model, definition of the material parameters and the influence of diagonal reinforcement were discussed at length. The results show that the concrete damage plasticity model can be well used for hysteretic analysis of reinforced concrete members if the relevant parameters are reasonably defined. Diagonal reinforcements can not significantly improve ductility of the specimens, but can improve their shear capacities. This paper can provide reference for the performance simulation of reinforced concrete members under cyclic loading.

2018 ◽  
Vol 250 ◽  
pp. 03007
Author(s):  
CL Oh ◽  
SW Lee ◽  
MZ Mohd Raizamzamani ◽  
AR Azerai ◽  
Y Norrul Azmi

Development of high strength concrete as a new ecological construction material to sustain the gradually expanding construction industry has arisen. This paper presents nonlinear finite element analysis of three-dimensional high strength reinforced concrete beams using ABAQUS. The uniaxial compressive strength for the beam models were taken from the existing experimatal data on high strength concrete cubes. Eurocode 2 was also used to establish material parameters for the constitutive models for concrete and reinforcing bars. In this study, two 150mm x 200mm x 1200mm simply supported rectangular concrete beam models subjected to loads at different shear span to effective depth ratios (a/d = 1.0 and 2.0) were analysed. Numerical results were validated with the existing experimental data specifically on the load-deflection responses and von mises stresses. It was found that the finite element results show greater than 70% agreement with the experimental results.


1994 ◽  
Vol 21 (2) ◽  
pp. 207-218 ◽  
Author(s):  
Helmut G. L. Prion ◽  
Jens Boehme

The results of an investigation into the behaviour of thin-walled steel tubes filled with high strength concrete are presented. The main emphasis is placed on the level of ductility that can be achieved, considering the fact that neither high strength concrete nor thin steel tubes are individually able to absorb significant amounts of energy under cyclic loading. Results of 26 tests on specimens with a diameter of 152 mm and a wall thickness of 1.7 mm, filled with concrete of characteristic compressive strength ranging between 73 and 92 MPa, are reported. Load combinations on the specimens range from pure axial compression, through various combinations of axial load and bending, to pure bending. Three specimens were subjected to cyclic loading. Test results are compared with design models that are used in current code specifications. Key words: steel tubes, concrete, composite, beam-column, beam, column, experimental.


Sign in / Sign up

Export Citation Format

Share Document