Thermal Characteristics Analysis of Nuclear Power CNC Wheel Groove Milling Machine Based on Finite Element

2013 ◽  
Vol 816-817 ◽  
pp. 1100-1104
Author(s):  
Zhi Wei Li ◽  
Dan Lu Song

For nuclear power CNC wheel groove milling machine in the work under the influence of a variety of heat sources, establish the finite element model of machine, using finite element analysis software ANSYS, analysis and thermal-structure coupling of heat source in the processing state mechanism, thermal key points out machine, the effect of deformation on the machine geometric accuracy evaluation of heat, and the machine thermal optimization analysis of corresponding, deformation of machine in the three direction. The results show that: the machine in machining spindle heat is an important factor affecting the machining accuracy of machine tools, and heat through various ways to machine tool bed, causing warping, guide rail bending, through this analysis provides reference for analysis and optimization design for the machine tool thermal deformation.

2011 ◽  
Vol 228-229 ◽  
pp. 66-71
Author(s):  
Xiao Hong Lu ◽  
Zhen Yuan Jia ◽  
Zhi Cong Zhang ◽  
Xv Jia

The fixture of motorized spindle significantly affect the vibration of micro high speed CNC milling machine, its performance can directly affect the machining accuracy of the entire micro milling machine. A special fixture of high-speed motorized spindle is designed in the paper and its static characteristics are checked by utilizing ANSYS finite element analysis software. To guarantee the sufficient strength of bolts and the safety of motorized spindle when the motorized spindle runs at high speed, theory analysis method and ANSYS finite element analysis method are used to make the strength check of the fixture. The designed special fixture for high speed motorized spindle plays an important part in the design of high-speed motorized spindle.


2011 ◽  
Vol 52-54 ◽  
pp. 1206-1211 ◽  
Author(s):  
Huai Xing Wen ◽  
Mei Yan Wang

The thermal characteristics of the motorized spindle determines maching qualities and cutting capabilities, and is one of the important factors influencing the precision of the high speed NC machine tool. To improve the performance of the high speed machine tool, it is important to study the thermal characteristics of the motorized spindle. It had been studied in two ways: one is finite element analysis by Ansys software, in which the finite element analysis model was built. According to the actual working condition, the heat source and the heat transfer coefficient of every part are calculated. On this basis, the temperature field and temperature rises were gotten in Ansys software. The other way is temperature rises experiment on the motorized spindle test platform. The result was shown in the form of curve. These two ways shown the same result: the highest temperature rise appears in the area of electromotor, then followed by the rolling bearing .The result provides the necessary theory basis for optimizing the structure of the motorized spindle and establishes a basis for the research and application about the high speed spindle.


2013 ◽  
Vol 589-590 ◽  
pp. 740-745
Author(s):  
Li Meng Wang ◽  
Xiao Zhou Li ◽  
Jin Kai Xu ◽  
Lin Lin ◽  
Jing Dong Wang ◽  
...  

In this paper, ultrasonic vibration turn-milling machine tool has been designed based on the analysis of processing principle . CATIA is used to generate three-dimensional solid model for the overall layout structure of high speed miniature lathe, while finite element analysis software is used to achieve dynamic performance analysis, so as to obtain each factorial of machine-tool vibration and natural frequency. The results are important to machine optimization and the construction of experimental prototype, and will guide the next work.


2007 ◽  
Vol 10-12 ◽  
pp. 258-262 ◽  
Author(s):  
Y. Lu ◽  
Ying Xue Yao ◽  
R.H. Hong

Motorized spindle is one of the core parts of high-speed machine tool, to a great extent, its thermal characteristics determine the thermal stress and thermal deformations, therefore the research on thermal characteristics is of great significance to increase the accuracy of high-speed machine tool. In this paper, the heat generation developed in the built-in motor and the bearings is calculated. The motorized spindle is modeled and its thermal characteristics analysis by finite element method is done using ANSYS software, in the foundation of analyzing its configuration and heat transfer. The variation regularity of its temperature-rise and temperature field is also summarized. Thereby it provides a powerful theoretical basis for reducing temperature–rise, calculating thermal deformations and improving working conditions.


2013 ◽  
Vol 770 ◽  
pp. 54-58 ◽  
Author(s):  
Ming Jun Chen ◽  
Lin Yu ◽  
He Nan Liu ◽  
Wan Qun Chen

The dynamic characteristics of machine tool directly affect machining accuracy of the final parts. Taking the self-developed HRG ultra-precision polishing CNC machine tool as the research object, the simplified finite element model is established with the finite element analysis software to do the dynamic analysis and the natural frequency is detected as the index of the dynamic performances. Based on the comparative analysis of the natural frequency and vibration modes, the gantry and the supporting frame are recognized as structural weaknesses of the machine tool, and then the modal test is done to verify simulation results. Eventually the structural weaknesses are optimized effectively. The 1st order nature frequency of the optimized gantry and the optimized supporting frame is increased 75.5% and 80.8% respectively so that they have better dynamic performances, resulting in offering higher workpiece quality and process stability.


2013 ◽  
Vol 441 ◽  
pp. 576-579
Author(s):  
Fan Jie Luo ◽  
Dan Lu Song ◽  
Zhi Wei Li ◽  
Qing Yun Jian

Taking XK5034 vertical milling machine as the research object, its thermal characteristic's finite element analysis has been carried out through the ANSYS. The front-end of the spindle mainly affects the machining accuracy of machine tool, so on the basis of the temperature field analysis, its thermal deformation was analyzed under different environment temperature, and the change rules between environment temperature and thermal deformation of the front of the spindle was also acquired. The results show that the influence of machine tool thermal deformation under different temperature is obvious.


2011 ◽  
Vol 291-294 ◽  
pp. 2302-2305 ◽  
Author(s):  
Yao Man Zhang ◽  
Qi Wei Liu ◽  
Jia Liang Han

The final manufacturing performances of the machine tools will be influenced by its thermal characteristics seriously and accurately predict thermal characteristic is helpful to improve the machine design level. Based on the analysis on factors that influence machine thermal characteristic, finite element analysis model of the headstock has been constructed, and the steady temperature field distribution and thermal equilibrium time calculation of the headstock are calculated, and then the temperature field and thermal deformation of the headstock under the action of heat and structure load have been calculated, and analysis to identify the trend of the spindle assembly and headstock heat distortion are also been done. The analysis reveals the machine processing performance influence will be influenced by the hot asymmetric, the study give priority to spindle assembly of optimization design, thermal error compensation.


2010 ◽  
Vol 34-35 ◽  
pp. 507-511 ◽  
Author(s):  
Jian Han ◽  
Li Ping Wang ◽  
Lian Qing Yu

Thermal induced errors are significant factors that affect machine tool accuracy. The deformation of spindle is the main contributor to thermal error. In this paper, the thermal characteristics of the spindle system are investigated. Taking into account the coupling of elastic deformation and temperature, the heat conduction of the spindle system is modeled. The heat of bearings and heat transfer coefficient, and boundary conditions of the spindle are determined. Based on the numerical results, an iterative model of spindle's temperature and thermal deformation are acquired under the actions of thermal loads using the finite element method. Taking the spindle of precision boring machine with some reasonable assumptions and simplicities as an example, the finite element analysis model of spindle thermal characteristics is analyzed with virtual prototyping, and the static/transient temperature field and thermal-structure field are calculated using ABAQUS software. The characteristics of heat flow and thermal deformation within the spindle are analyzed according to the simulation results. The research results provide a theoretical foundation for reasonable arrangement and optimal design to reduce radial and axial deformation of the spindle head, temperature controlling, and the error compensation to the precision machining tool.


2014 ◽  
Vol 577 ◽  
pp. 187-191
Author(s):  
Ming Yue Xiao ◽  
Zhong Ping Hua ◽  
Shui Sheng Cheng

In the working process of numerically-controlled machine tool, the generation of heat by friction between the guide rail and the workbench will cause the thermal deformation under the high temperature, which impacts on the machining accuracy of machine tool. Through the finite element modeling for the guide rail of machine tool by the ANSYS software, the thermal characteristics is simulated in the process of guide rail, then the main factors of thermal deformation is analyzed, finally the corresponding measures focusing on the error compensation is proposed.


Sign in / Sign up

Export Citation Format

Share Document