The Linear Optimal Control for the Mechanical Vibration Based on Remanufacturing Repaired

2013 ◽  
Vol 823 ◽  
pp. 47-51
Author(s):  
Ling Liu

It is used by the piezoelectric ceramics sheet of positive-inverse piezoelectric effect in a set of copper alloy remanufacturing repair cantilever vibration system as the research object in the paper.A state space model have been generated on the cantilever beem mechanical structure of dynamics finite element modeling and degrees of freedom dynamic polycondensation.It is inhibited effectively when a cantilever beam subjected to external transient pulse disturbance caused by first order, two order and higher order system mode vibration,by using the linear quadratic optimal control of two state regulation for the detection of position feedback independent modal control on the basis of the state-space model. Software is used to simulate active vibration control effect.The simulation results show that the mode control inhibited have excellent effects for the repaired cantilever vibration, also analysed on the modal control parameters for the vibration suppression effect.

2016 ◽  
Vol 36 (4) ◽  
pp. 460-472 ◽  
Author(s):  
Jing Hu ◽  
Yuan Zhang ◽  
Maogen GE ◽  
Mingzhou Liu ◽  
Liu Conghu ◽  
...  

Purpose The optimal control on reassembly (remanufacturing assembly) error is one of the key technologies to guarantee the assembly precision of remanufactured product. However, because of the uncertainty existing in remanufactured parts, it is difficult to control assembly error during reassembly process. Based on the state space model, this paper aims to propose the optimal control method on reassembly precision to solve this problem. Design/methodology/approach Initially, to ensure the assembly precision of a remanufactured car engine, this paper puts forward an optimal control method on assembly precision for a remanufactured car engine based on the state space model. This method takes assembly workstation operation and remanufactured part attribute as the input vector reassembly status as the state vector and assembly precision as the output vector. Then, the compensation function of reassembly workstation operation input vector is calculated to direct the optimization of the reassembly process. Finally, a case study of a certain remanufactured car engine crankshaft is constructed to verify the feasibility and effectiveness of the method proposed. Findings The optimal control method on reassembly precision is an effective technology in improving the quality of the remanufactured crankshaft. The average qualified rate of the remanufactured crankshaft increased from 83.05 to 90.97 per cent as shown in the case study. Originality/value The optimal control method on the reassembly precision based on the state space model is available to control the assembly precision, thus enhancing the core competitiveness of the remanufacturing enterprises.


1988 ◽  
Vol 110 (1) ◽  
pp. 17-23
Author(s):  
P. M. Clarkson ◽  
J. K. Hammond

A method of deconvolution has been developed which uses the techniques of optimal control. The application of the technique to velocity meter signals is presented. It is shown that provided a state-space model of the transducer dynamics can be obtained the method can provide effective deconvolution even when the data are corrupted by measurement noise. As well as the deconvolution method and the control of the measurement noise the formation of the state-space model and the effects of inaccurate estimation of system parameters are considered. Results are presented using both simulated and experimental data.


Author(s):  
Junhao Cao ◽  
Xiaodong Sun ◽  
Xiang Tian

This paper focus on a state feedback controller (SFC)-based optimal control scheme for surface-mounted permanent-magnet synchronous motor (SPMSM) with auto-tuning of controller built on seeker optimization algorithm (SOA). First, based on the nonlinear state-space model of SPMSM, voltage feedforward compensation is used to design a linear SFC. Then in order to guarantee the steady performance in speed and current, integral models considering the errors of rotor speed and current response in d-axis are added in the state space model of SPMSM. Furthermore, by statically decoupling the load torque in the state equation, feedforward compensation is implemented on the load torque to improve the dynamic performance of the controller. The load torque is estimated using disturbance observer with reasonable parameter selection. Then, with the consideration of the search capacity of seeker optimization algorithm (SOA), it is adopted to acquire matrix coefficient of the presented controller. Furthermore, in order to suppress the speed overshoot, a penalty term is introduced to the fitness index. The performance of the proposed method has been validated experimentally and compared with the conventional method under different conditions.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3279
Author(s):  
Juan F. Patarroyo-Montenegro ◽  
Jesus D. Vasquez-Plaza ◽  
Fabio Andrade

In this work, a synchronous model for grid-connected and islanded microgrids is presented. The grid-connected model is based on the premise that the reference frame is synchronized with the AC bus. The quadrature component of the AC bus voltage can be cancelled, which allows to express output power as a linear equation for nominal values in the AC bus amplitude voltage. The model for the islanded microgrid is developed by integrating all the inverter dynamics using a state-space model for the load currents. This model is presented in a comprehensive way such that it could be scalable to any number of inverter-based generators using inductor–capacitor–inductor (LCL) output filters. The use of these models allows designers to assess microgrid stability and robustness using modern control methods such as eigenvalue analysis and singular value diagrams. Both models were tested and validated in an experimental setup to demonstrate their accuracy in describing microgrid dynamics. In addition, three scenarios are presented: non-controlled model, Linear-Quadratic Integrator (LQI) power control, and Power-Voltage (PQ/Vdq) droop–boost controller. Experimental results demonstrate the effectiveness of the control strategies and the accuracy of the models to describe microgrid dynamics.


2020 ◽  
Vol 10 (23) ◽  
pp. 8537
Author(s):  
Xiaobiao Shan ◽  
Henan Song ◽  
Chong Zhang ◽  
Guangyan Wang ◽  
Jizhuang Fan

This paper presents the discrete state space mathematical model of the end-effector in industrial robots and designs the linear-quadratic-Gaussian controller, called LQG controller for short, to solve the low frequency vibration problem. Though simplifying the end-effector as the cantilever beam, this paper uses the subspace identification method to determine the output dynamic response data and establishes the state space model. Experimentally comparing the influences of different input excitation signals, Chirp sequences from 0 Hz to 100 Hz are used as the final estimation signal and the excitation signal. The LQG controller is designed and simulated to achieve the low frequency vibration suppression of the structure. The results show that the suppression system can effectively suppress the fundamental natural frequency and lower vibration of end-effector. The vibration suppression percentage is 95%, and the vibration amplitude is successfully reduced from ±20 μm to ±1 μm. The present work provides an effective method to suppress the low frequency vibration of the end-effector for industrial robots.


Sign in / Sign up

Export Citation Format

Share Document