Experimental Study on Seismic Behavior of High Strength Steel Composite K-Type Eccentrically Braced Frames

2013 ◽  
Vol 838-841 ◽  
pp. 559-563
Author(s):  
Liu Sheng Duan ◽  
Ming Zhou Su ◽  
Hui Li

High strength steel composite K-type eccentrically braced frame is a new structural system, in which the link is made from low yield point steel and the others are made from high strength steel. In order to study the seismic behavior of such a structure, four one-bay one-story 1/2 scaled plane specimens were tested under the monotonic and cyclic load respectively. The failure modes and the main indexes of seismic behavior of specimens with various links length were analyzed. The results show that this new structural form is good at energy dissipation and ductility, and the way of energy absorbing by shear yield is better than by flexure yield. Under cyclic load, the main failure were concentrated at links, while the other parts of the eccentrically braced frame kept in elastic status. This kind of structure is an excellent dual resistance system and easy to rehabilitate after earthquake.

2020 ◽  
Vol 10 (13) ◽  
pp. 4684
Author(s):  
Jian Feng ◽  
Shuo Wang ◽  
Marco Meloni ◽  
Qian Zhang ◽  
Jingwen Yang ◽  
...  

This paper presents an experimental investigation of the seismic performance of interior beam–column joints with beams reinforced with Grade 600MPa longitudinal steel bars. Six full-scale reinforcement concrete (RC) interior joints are designed with different axial compression ratios and longitudinal reinforcement ratios, which are tested under reversed cyclic loading. Failure modes, hysteretic curves, skeleton curves, energy dissipation capacity, and the ductility of joints are investigated systematically. Moreover, the effect of the different axial compression ratios and longitudinal reinforcement ratios on the seismic behavior of the joints are deeply studied. Comparisons performed between specimens demonstrate that among the beam–column joints with 600 MPa high strength steel bars, specimens with high reinforcement ratios have better energy dissipation capacity, slower stiffness degradation, and lower ductility. Moreover, with the increase of the axial compression ratios, the energy dissipation capacity and ductility become weaker. The test results show the favorable seismic properties of beam–column joints equipped with 600 MPa high strength steel bars, which can be regarded as the research basis of the popularization and application of 600 MPa high strength steel bars in reinforcement concrete frame structures.


Sign in / Sign up

Export Citation Format

Share Document