steel composite
Recently Published Documents


TOTAL DOCUMENTS

689
(FIVE YEARS 216)

H-INDEX

33
(FIVE YEARS 9)

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Yunzan Ma ◽  
Weijiang Yang ◽  
Qi Liu ◽  
Kejia Liu ◽  
Kun Chen

In this paper, the interface microstructure, elements’ diffusion features at the interface, and bonding properties in nickel-based alloy/carbon steel clad composite prepared by vacuum hot-roll bonding were investigated, comprehensively. The influence of element distribution on the interface bonding strength was revealed as well. The results showed that there was a 13 μm thick diffusion layer at the interface of nickel-based alloy/carbon steel composite plate, which was beneficial to a strong bond between nickel-based alloy and carbon steel, as well as the stable transition of mechanical properties in the thickness direction. Kirkendall voids and fine-grained structure (the grain size is about 41.5 nm) were observable by peeling off the nickel-based alloy cladding, which greatly promoted element diffusion and enhanced the interfacial bonding strength of the nickel-based alloy/carbon steel composite plate. The diffusion coefficient of Ni at the interface was about 2 orders of magnitude larger than that of nanocrystalline Fe. The shear strength reached up to 453 MPa, which was much higher than the minimum of 140 MPa defined in ASTM A-264 specifications. Furthermore, in the shear test, the fracture occurred on the X52 carbon steel side at the contact rather than at the composite plate interface.


2022 ◽  
pp. 136943322110646
Author(s):  
Yang Huang ◽  
Shiming Chen ◽  
Ping Gu

Ultrahigh-performance concrete-orthotropic steel composite bridge deck is composed of the orthotropic steel deck and a thin ultrahigh-performance concrete (UHPC) overlayer. In the previous fatigue tests, two typical fatigue failure modes were found and identified. As a supplementary test after fatigue tests, air penetration method is capable of providing a reference to the quantitative and non-destructive damage detection of fatigue damage of UHPC. To further the previous study, a detailed numerical investigation is accomplished through complimentary finite element (FE) analysis. Compared with the solid element model, the refined shell-solid element model can better reflect the mechanical behavior. It is illustrated that the vertical stress can be adopted in assessing the fatigue strength of rib-to-diaphragm welded connection in the field test by means of nominal stress method. The combination of various factors would lead to fatigue shear failure of the short headed-studs. The fatigue strength of rib-to-diaphragm welded connection predicted by the hot spot stress method and the consistent nominal stress (CNS) method can basically meet the requirements of FAT90. The consistent nominal stress method can be used as the optimization method of nominal stress of fatigue detail. It is demonstrated that the fatigue life of UHPC can be estimated by S-N curves of ordinary concrete conservatively. The allowable equivalent maximum stress level can be taken as 0.55 for two million cycles of fatigue loading, and 0.52 for five million cycles of fatigue loading.


2022 ◽  
Vol 2160 (1) ◽  
pp. 012038
Author(s):  
Weifeng Xu ◽  
Xi Wang ◽  
Yuying Shangguan ◽  
Yanhe Li

Abstract In order to study the paste failure mode and ultimate shear bonding force of CFRP plate-steel interface anchor bonding, a single-sided shear test was carried out on a total of 15 carbon fiberboard (CFRP)-steel composite beam structure specimens in five groups. The test results show that for organic adhesives, the uniform anchoring method can improve the bearing capacity of the construction; for organic adhesives, the ultimate shearing when the specimen is peeled with inorganic glue is used. The bonding capacity is greater than that of specimens with organic adhesives.


2022 ◽  
Vol 315 ◽  
pp. 125714
Author(s):  
Yong-Chang Guo ◽  
Shu-Hua Xiao ◽  
Jun-Jie Zeng ◽  
Jia-Ying Su ◽  
Tian-Zi Li ◽  
...  

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 18
Author(s):  
Pawel Zochowski ◽  
Marcin Bajkowski ◽  
Roman Grygoruk ◽  
Mariusz Magier ◽  
Wojciech Burian ◽  
...  

This article presents an analysis of the effectiveness of available numerical techniques in mapping the characteristic behavior of ballistic ceramics under projectile impact conditions. As part of the work, the ballistic tests were performed on the layered ceramic/steel composite armor and tested with the 7.62 × 39 mm, armor-piercing incendiary (API) BZ projectile. The experimental tests were then mapped using computer simulations. In numerical analyses, four different techniques were used to describe cubic ceramic tiles Al2O3 placed on the ARMOX 500T steel backing plate, i.e.,: the Finite Element Method without Erosion (FEM), Finite Element with erosion (FEM + Erosion), Smoothed Particles Hydrodynamics (SPH) and a hybrid method that converts finite elements to SPH particles after exceeding the defined failure criteria (FEM to SPH conversion). The effectiveness of the individual methods was compared in terms of quality (mapping of characteristic phenomena occurring during the penetration process), quantity (bulge height of the backing plate) and time needed to complete the calculations. On the basis of the results of the experiments and numerical simulations, it was noticed that the most accurate reproduction of the phenomenon of ballistic impact of AP projectiles on ceramic/steel composite armor can be obtained by using a hybrid method, incorporating the conversion of finite elements into SPH particles. This method should be used in cases where accuracy of the results is more important than the time required to complete the calculations. In other situations where the purpose of the calculation is not to determine, for example, the exact value of penetration depth but only to observe a certain trend, the FEM method with defined erosion criteria (variant 2), which is more than 10 times faster, can be successfully used.


2021 ◽  
Vol 86 (790) ◽  
pp. 1622-1633
Author(s):  
Daisuke IKEZAKI ◽  
Tomohiko TANIZAWA ◽  
Hiroshi YASUMOTO ◽  
Masatoshi YAMAZOE ◽  
Yuji SAKO ◽  
...  

2021 ◽  
Vol 169 ◽  
pp. 108354
Author(s):  
Shen-You Song ◽  
Yu-Tao Guo ◽  
Jian-Sheng Fan ◽  
A.Y. Elghazouli

Sign in / Sign up

Export Citation Format

Share Document