Small Wind Turbine Power Performance Testing with Uncertainty Analysis

2014 ◽  
Vol 875-877 ◽  
pp. 1944-1948
Author(s):  
Wen Lei Bai ◽  
Byun Gik Chang ◽  
Gerald Chen ◽  
Ken Starcher ◽  
David Carr ◽  
...  

Wind turbine power performance testing consists of power, temperature, air pressure and wind speed measurements collected for this study during which measuring uncertainties are involved. Due to the measurement uncertainties, the results of power performance testing are affected; therefore, it is necessary to consider the measurement uncertainties for evaluating the accuracy of turbine testing. For this purpose of this study, uncertainty analysis for one 5kW wind turbine power performance testing was conducted. The results of uncertainty analysis indicated that the uncertainty negatively affected the validity of conclusions drawn from power performance testing, and the uncertainty sources are various in different wind speed bins.

2014 ◽  
Vol 31 (10) ◽  
pp. 2029-2034 ◽  
Author(s):  
Andreas Rettenmeier ◽  
David Schlipf ◽  
Ines Würth ◽  
Po Wen Cheng

Abstract Different certification procedures in wind energy, such as power performance testing or load estimation, require measurements of the wind speed, which is set in relation to the electrical power output or the turbine loading. The wind shear affects the behavior of the turbine as hub heights and rotor diameters of modern wind turbines increase. Different measurement methods have been developed to take the wind shear into account. In this paper an approach is presented where the wind speed is measured from the nacelle of a wind turbine using a scanning lidar system. The measurement campaign was performed on the two-bladed Controls Advanced Research Turbine (CART-2) at the National Wind Technology Center in Colorado. The wind speed of the turbine inflow was measured and recalculated in three different ways: using an anemometer installed on a meteorological mast, using the nacelle-based lidar scanner, and using the wind turbine itself. Here, the wind speed was recalculated from turbine data using the wind turbine as a big horizontal anemometer. Despite the small number of useful data, the correlation between this so-called rotor effective wind speed and the wind speed measured by the scanning nacelle-based lidar is high. It could be demonstrated that a nacelle-based scanning lidar system provides accurate measurements of the wind speed converted by a wind turbine. This is a first step, and it provides evidence to support further investigations using a much more extensive dataset and refines the parameters in the measurement process.


Author(s):  
R. S. Amano ◽  
Ryan Malloy

The project has been completed, and all of the aforementioned objectives have been achieved. An anemometer has been constructed to measure wind speed, and a wind vane has been built to sense wind direction. An LCD module has been acquired and has been programmed to display the wind speed and its direction. An H-Bridge circuit was used to drive a gear motor that rotated the nacelle toward the windward direction. Finally, the blade pitch angle was controlled by a swash plate mechanism and servo motors installed on the generator itself. A microcontroller has been programmed to optimally control the servo motors and gear motor based on input from the wind vane and anemometer sensors.


2020 ◽  
Vol 146 ◽  
pp. 87-98 ◽  
Author(s):  
Anup KC ◽  
Jonathan Whale ◽  
Samuel P. Evans ◽  
Philip D. Clausen

2006 ◽  
Vol 128 (4) ◽  
pp. 531-538 ◽  
Author(s):  
Jonathon Sumner ◽  
Christian Masson

The impact of atmospheric stability on vertical wind profiles is reviewed and the implications for power performance testing and site evaluation are investigated. Velocity, temperature, and turbulence intensity profiles are generated using the model presented by Sumner and Masson. This technique couples Monin-Obukhov similarity theory with an algebraic turbulence equation derived from the k-ϵ turbulence model to resolve atmospheric parameters u*, L, T*, and z0. The resulting system of nonlinear equations is solved with a Newton-Raphson algorithm. The disk-averaged wind speed u¯disk is then evaluated by numerically integrating the resulting velocity profile over the swept area of the rotor. Power performance and annual energy production (AEP) calculations for a Vestas Windane-34 turbine from a wind farm in Delabole, England, are carried out using both disk-averaged and hub height wind speeds. Although the power curves generated with each wind speed definition show only slight differences, there is an appreciable impact on the measured maximum turbine efficiency. Furthermore, when the Weibull parameters for the site are recalculated using u¯disk, the AEP prediction using the modified parameters falls by nearly 5% compared to current methods. The IEC assumption that the hub height wind speed can be considered representative tends to underestimate maximum turbine efficiency. When this assumption is further applied to energy predictions, it appears that the tendency is to overestimate the site potential.


2021 ◽  
Vol 12 (2) ◽  
pp. 223-231
Author(s):  
Joel Mbwiga ◽  
Cuthbert Z Kimambo ◽  
Joseph Kihedu

Wind flow over the airfoil surface is adversely affected by the differences between the design and ambient values of a dimensionless quantity called Reynolds number. Wind turbine designed for high Reynolds Number shows lower maximum power performance when installed in low-speed wind regime. Tanzanian experience shows that some imported modern wind turbines depict lower power performance compared to the drag-type locally manufactured wind turbines. The most probable reason is the difference between design and local ambient Reynolds numbers. The turbine design parameters have their properties restricted to the range of Reynolds numbers for which the turbine was designed for. When a wind turbine designed for a certain range of Reynolds numbers is made to operate in the Reynolds number out of that range, it behaves differently from the embodied design specifications. The small wind turbine of higher Reynolds number will suffer low lift forces with probably occasional stalls.  


2011 ◽  
Vol 31 (4) ◽  
pp. 19-26 ◽  
Author(s):  
Suk-Whan Ko ◽  
Moon-Seok Jang ◽  
Jong-Po Park ◽  
Yoon-Su Lee

Sign in / Sign up

Export Citation Format

Share Document