Finite Element Analysis and Research of Engine Connecting Rod

2014 ◽  
Vol 915-916 ◽  
pp. 142-145 ◽  
Author(s):  
Qing Qian Zheng ◽  
Bin Yang ◽  
Hui Min Yang ◽  
Min Hu

The 3D Finite Element Method (FEM) model of engine connecting rod was established in this paper. And, nonlinear analysis of engine connecting rod was made, Stress distribution of the connecting rod under condition of maximum stretching and maximum compressing was simulated. The result shows that the results coincide with the actual results and connecting rod can satisfy the strength requirement, the method turns out to be very effective in practice.

Author(s):  
R. N. Margasahayam ◽  
H. S. Faust

Abstract A finite-element stress analysis of a one-piece, integrated, all-composite shaft and coupling is presented. In addition to a brief discussion of design-driving parameters, some limitations of the analytical techniques used for design development are described. The 3D finite-element method (FEM) was then used to evaluate critical stresses and strains experienced by the shaft coupling. A comparison of the results from the finite-element analysis and those from static bending, axial, and torsional tests conducted on these prototype shafts yielded excellent correlation. Some important considerations in the development of the FE model and the correlation of results with tests, especially in the design of composite materials, are addressed.


2015 ◽  
Vol 114 (5) ◽  
pp. 644-651 ◽  
Author(s):  
Leonardo Bueno Torcato ◽  
Eduardo Piza Pellizzer ◽  
Fellippo Ramos Verri ◽  
Rosse Mary Falcón-Antenucci ◽  
Joel Ferreira Santiago Júnior ◽  
...  

2014 ◽  
Vol 945-949 ◽  
pp. 190-193
Author(s):  
Hai Lin Wang ◽  
Yi Hua Sun ◽  
Ming Bo Li ◽  
Gao Lin ◽  
Yun Qi Feng ◽  
...  

Q43Y-85D type crocodile hydraulic clipping machine was taken as research object to optimization design. A finite element model for clipping machine was built using shell unit as fundamental unit. ANSYS12.0 finite element method was used to analyze the deformation and stress distribution of the shear platform model of hydraulic clipping machine. The result showed that the maximum equivalent stress at the dangerous area was 368.162 MPa and the maximum elastic strain was 0.1814×10-2 mm. After the structural optimization design, it was found that the maximum equivalent stress decreased to 186.238 MPa which did not exceed the material’s yield limitation 215 MPa and the maximum elastic strain decreased to 0.919×10-3 mm which satisfied the requirement of stiffness.


Sign in / Sign up

Export Citation Format

Share Document