Finite Element Analysis of Hydraulic Clipping Machine Shear Platform Dased on ANSYS

2014 ◽  
Vol 945-949 ◽  
pp. 190-193
Author(s):  
Hai Lin Wang ◽  
Yi Hua Sun ◽  
Ming Bo Li ◽  
Gao Lin ◽  
Yun Qi Feng ◽  
...  

Q43Y-85D type crocodile hydraulic clipping machine was taken as research object to optimization design. A finite element model for clipping machine was built using shell unit as fundamental unit. ANSYS12.0 finite element method was used to analyze the deformation and stress distribution of the shear platform model of hydraulic clipping machine. The result showed that the maximum equivalent stress at the dangerous area was 368.162 MPa and the maximum elastic strain was 0.1814×10-2 mm. After the structural optimization design, it was found that the maximum equivalent stress decreased to 186.238 MPa which did not exceed the material’s yield limitation 215 MPa and the maximum elastic strain decreased to 0.919×10-3 mm which satisfied the requirement of stiffness.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bin Zheng ◽  
Yi Cai ◽  
Kelun Tang

Purpose The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the original connecting rod, the finite element analysis was conducted to reduce the weight and increase the natural frequencies, so as to reduce materials consumption and improve the energy efficiency of internal combustion engine. Design/methodology/approach The finite element analysis, structural optimization design and topology optimization of the connecting rod are applied. Efficient hybrid method is deployed: static and modal analysis; and structure re-design of the connecting rod based on topology optimization. Findings After the optimization of the connecting rod, the weight is reduced from 1.7907 to 1.4875 kg, with a reduction of 16.93%. The maximum equivalent stress of the optimized connecting rod is 183.97 MPa and that of the original structure is 217.18 MPa, with the reduction of 15.62%. The first, second and third natural frequencies of the optimized connecting rod are increased by 8.89%, 8.85% and 11.09%, respectively. Through the finite element analysis and based on the lightweight, the maximum equivalent stress is reduced and the low-order natural frequency is increased. Originality/value This paper presents an optimization method on the connecting rod structure. Based on the statics and modal analysis of the connecting rod and combined with the topology optimization, the size of the connecting rod is improved, and the static and dynamic characteristics of the optimized connecting rod are improved.


2014 ◽  
Vol 680 ◽  
pp. 249-253
Author(s):  
Zhang Qi Wang ◽  
Jun Li ◽  
Wen Gang Yang ◽  
Yong Feng Cheng

Strain clamp is an important connection device in guy tower. If the quality of the compression splicing position is unsatisfied, strain clamp tends to be damaged which may lead to the final collapse of a guy tower as well as huge economic lost. In this paper, stress distribution on the compressible tube and guy cable is analyzed by FEM, and a large equivalent stress of guy cable is applied to the compression splicing position. During this process, a finite element model of strain clamp is established for guy cables at compression splicing position, problems of elastic-plastic and contracting are studied and the whole compressing process of compressible position is simulated. The guy cable cracks easily at the position of compressible tube’s port, the inner part of the compressible tube has a larger equivalent stress than outside.


2011 ◽  
Vol 460-461 ◽  
pp. 44-47
Author(s):  
Wei Hua Kuang

The cold expanding diameter process was simulated by the software of DEFORM. The finite element model of tube and dies were built. The object position definition, the inter object setting, movement definition and simulation step were correctly set. The deformation, total velocity distribution and equivalent stress distribution were predicted. The numerical simulation results showed that the finite element analysis could exactly describe the plastic deformation and stress distribution during the forming process.


2014 ◽  
Vol 40 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Marzieh Alikhasi ◽  
Hakimeh Siadat ◽  
Allahyar Geramy ◽  
Ahmad Hassan-Ahangari

The purpose of this study was to evaluate the influence of the stress/strain distribution in buccal bone of an anterior maxillary implant using 3 bone thicknesses under 5 different loading angles. Different testing conditions incorporating 3 buccal bone thicknesses, 3 bone compositions, and 5 loading angles of an anterior maxillary implant were applied in order to investigate the resultant stress/strain distribution with finite element analysis. The maximum equivalent stress/strain increased with the decreasing of loading angle relative to the long axis. In addition to loading angle, bone quality and quantity also influenced resultant stress distribution. Dental practitioners should consider combinations of bone composition, diameter, and load angulations to predict success or failure for a given implant length and diameter.


2013 ◽  
Vol 405-408 ◽  
pp. 997-1001
Author(s):  
Guo Qiang Yu ◽  
Fei Wang ◽  
Guang Du

In order to provide evidence for optimization design of directly buried heating pipeline tees, finite element models of tees with different ratios of branch-main pipe diameters had been established and simulated by structure analysis soft ANSYS. The change law of maximum equivalent stress values in pipe-nozzle intersection area had been obtained at same temperature, pressure loads and displacement constraints. The results show that maximum equivalent stress values of stamped tees are less than welded tees with same specifications. And stamped tees with lager fillet radius and local wall thickness can effectively decrease maximum equivalent stress values of pipe-nozzle intersection area.


2003 ◽  
Vol 15 (02) ◽  
pp. 82-85 ◽  
Author(s):  
SHYH-CHOUR HUANG ◽  
CHANG-FENG TSAI

This paper presents results from using a 3-dimensional finite element model to assess the stress distribution in the bone, in the implant and in the abutment as a function of the implant's diameter and length. Increasing implant diameter and length increases the stability of the implant system. By using a finite element analysis, we show that implant length does not decrease the stress distribution of either the implant or the bone. Alternatively, however implant diameter increases reduce the stresses. For the latter case, the contact area between implant and bone is increased thus the stress concentration effect is decreased. Also, with increased implant diameter the bone loss is decreased and as a consequence the success rate is improved.


2013 ◽  
Vol 710 ◽  
pp. 243-246
Author(s):  
Xian Hong Yang

The use of Pro/E and their respective advantages ANSYS software product design and engineering analysis to solve the case, first of all in the Pro/E, the completion of three-dimensional helical gear design, and then in the Pro/MECHANICA completed finite element model of helical gear, and then into ANSYS for finite element analysis of bevel gear calculation and simulation, finite element analysis of the final results of optimization design model is presented recommendations for improvement. The product design and engineering analysis method has some reference value in engineering design.


2014 ◽  
Vol 548-549 ◽  
pp. 449-453 ◽  
Author(s):  
Zhi Qiang Guo ◽  
Ze Lu Xu

For the problem of balance bearing of universal spindle in rolling mill being prone to damage, the paper established mechanical model and finite element model of universal spindle. The paper has analyzed that the shear and bending moment in the middle of the shaft is the largest. The fillet near shoulder of balance bearing of the spindle is dangerous part. In order to reduce principal stress of universal spindle caused by moment, the paper improved balance mode of the spindle. The equilibrant was applied from in one place of shaft to put in two places. After optimizing, equivalent stress of the spindle is slight smaller than before under the same loading condition, which illustrates that the strength of the spindle is appropriately improved. Although the effect is not obvious, this has played a guiding role for the optimization of balance mode of universal spindle.


2012 ◽  
Vol 472-475 ◽  
pp. 688-691
Author(s):  
Xin Mei Yuan ◽  
Si Zhu Zhou ◽  
Tian Cheng Huang

In order to improve the work life and reliability of turbodrill diversion liner, the parametric finite element model for turbodrill diversion liner is established by using finite element analysis software, and the result of finite element analysis is shown that the maximum equivalent stress is bigger and the work safety coefficient is low. On the basis of the result of finite element analysis and the characteristics of diversion liner, the improvement scheme is put forward and the finite element analysis is carried out. The analysis result shows that the fillet radius of diversion hole drilling fluid inlet has an importance impact on the maximum equivalent stress. When the fillet radius is 9 millimeter, the maximum equivalent stress is least, the maximum equivalent stress is reduced by 34.82% compared with the original structure, and the safety coefficient reached 1.772, and the results meet the design requirement.


2011 ◽  
Vol 411 ◽  
pp. 54-58
Author(s):  
Tao Feng ◽  
Xiao Li Jin

Based on the analytical theories of the joint surface, finite element modeling method of two kinds of joint about rails and bolts were studied. The finite element model of the engraving machine is built and its static and dynamic characterization is analyzed by the universal ANSYS. By this way, unreasonable structural design of engraving machine can be conducted, which will provide support for the optimization design of the structure. The correctness of the modeling method of joint surface is confirmed.


Sign in / Sign up

Export Citation Format

Share Document