Analysis of One-Dimensional Thermal Consolidation for Saturated Soil Considering Different Permeabilities

2014 ◽  
Vol 919-921 ◽  
pp. 641-644
Author(s):  
Cai Xia Guo ◽  
Rui Qian Wu

Based on the analytical solutions of pore-water pressure and settlement. Problems of the one-dimensional thermal consolidation of saturated soil considering three different permeabilities were analyzed. Aiming at each permeability of thermal consolidation theory, compared with the corresponding Terzaghis consolidation theory, the one-dimensional thermal consolidation behaviour of saturated soil was analyzed in terms of excess pore-water pressure, the settlement. The results show that the permeability plays an important role in the thermal consolidation. The more permeability, the quicker pore-water pressure dissipation and the rate of settlement. Settlement of ground is more sensitive to temperature condition than the excess pore-water pressure. The behaviour of excess pore-water pressure in the process of thermal consolidation is very similar to the corresponding Terzaghis theory.

2012 ◽  
Vol 594-597 ◽  
pp. 335-338
Author(s):  
Xue Shen ◽  
Rui Qian Wu

Based on a one-dimensional thermal consolidation formulation with and without thermo-mechanical coupling of saturated porous medium, problems of one-dimensional thermal consolidation of saturated soil were investigated. For the condition with instantaneous constant surface temperature and uniform initial pore-pressure, analytical solutions of excess pore-water pressure and temperature increment were derived respectively by the method of finite Fourier transform and inverse transform. A relevant computer program was developed, and the excess pore-water pressure was compared in detail. The results show that the thermo-mechanical coupling item in the thermal consolidation equation can be ignored.


2002 ◽  
Vol 39 (5) ◽  
pp. 1126-1138 ◽  
Author(s):  
E Mohamedelhassan ◽  
J Q Shang

In this study, a vacuum and surcharge combined one-dimensional consolidation model is developed. Terzaghi's consolidation theory is revisited by applying the initial and boundary conditions corresponding to combined vacuum and surcharge loading on a soil. A test apparatus is designed, manufactured, and assembled to verify the model. The apparatus has the capacity of applying designated vacuum and surcharge pressures to a soil specimen, and it allows for the measurement of the excess pore-water pressure, settlement, and volume change during the consolidation process. Two series of tests are performed using the apparatus on two reconstituted natural clay soils, namely, the Welland sediment at water contents close to its liquid limit and the Orleans clay, reconstituted and consolidated under an effective stress of 60 kPa. The former test series mimics the strengthening of a very soft soil, such as the hydraulic fill used in land reclamation. The latter test series is designed to study vacuum–surcharge combined strengthening of a consolidated soil. It is demonstrated from the experiments that the one-dimensional vacuum-surcharge consolidation model describes the consolidation behaviour of both soils well. The consolidation characteristics of the soils show no discrimination against the nature of the consolidation pressure, namely, whether they are consolidated under the vacuum pressure alone, under the surcharge pressure alone, or under a pressure generated by the combined application of vacuum and surcharge. The study concluded that the soil consolidation characteristics obtained from the conventional consolidation tests can be used in the design of vacuum preloading systems, provided that the one-dimensional loading condition prevails.Key words: consolidation, soil improvement, vacuum pressure, surcharge pressure, excess pore-water pressure, soil consolidation parameters.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Ming Sun ◽  
Meng-fan Zong ◽  
Shao-jun Ma ◽  
Wen-bing Wu ◽  
Rong-zhu Liang

By introducing the exponentially time-growing drainage boundary, this paper investigated the one-dimensional consolidation problem of soil under a ramp load. Firstly, the one-dimensional consolidation equations of soil are established when there is a ramp load acting on the soil surface. Then, the analytical solution of excess pore water pressure and consolidation degree is derived by means of the method of separation of variables and the integral transform technique. The rationality of this solution is also verified by comparing it with other existing analytical solutions. Finally, the consolidation behavior of soil is studied in detail for different interface parameters or loading scheme. The results show that the exponentially time-growing drainage boundary can reflect the phenomenon that the excess pore water pressure at the drainage boundaries dissipates smoothly rather than abruptly from its initial value to the value of zero. By adjusting the values of interface parameters b and c, the presented solution can be degraded to Schiffman’s solution, which can compensate for the shortcoming that Terzaghi’s drainage boundary can only consider the two extreme cases of fully pervious and impervious boundaries. The significant advantage of the exponentially time-growing drainage boundary is that it can be applied to describe the asymmetric drainage characteristics of the top and bottom drainage surfaces of the actual soil layer by choosing the appropriate interface parameters b and c.


2018 ◽  
Vol 14 (10) ◽  
pp. 155014771880671 ◽  
Author(s):  
Wenbing Wu ◽  
Mengfan Zong ◽  
M Hesham El Naggar ◽  
Guoxiong Mei ◽  
Rongzhu Liang

In this article, the exponentially time-growing drainage boundary is introduced to study the one-dimensional consolidation problem of double-layered soil. First, the one-dimensional consolidation equations of soil underlying a time-dependent loading are established. Then, the analytical solution of excess pore water pressure and average consolidation degree is obtained by utilizing the method of separation of variables when the soil layer is separately undergone instantaneous load and single-stage load. The validity of the present solution is proven by the comparison with other existing analytical solution. Finally, the influence of soil properties and loading scheme on the consolidation behavior of soil is investigated in detail. The results indicate that, the present solution can be degraded to Xie’s solution utilizing Terzaghi’s drainage boundary by adjusting the interface parameter, that is to say, Xie’s solution can be regarded as a special case of the present solution. The interface parameter has a significant influence on the excess pore water pressure of soil, and the larger interface parameter means the better drainage capacity of the soil layer.


2011 ◽  
Vol 261-263 ◽  
pp. 1534-1538
Author(s):  
Yu Guo Zhang ◽  
Ya Dong Bian ◽  
Kang He Xie

The consolidation of the composite ground under non-uniformly distributed initial excess pore water pressure along depth was studied in two models which respectively considering both the radial and vertical flows in granular column and the vertical flow only in granular column, and the corresponding analytical solutions of the two models were presented and compared with each other. It shows that the distribution of initial excess pore water pressure has obvious influence on the consolidation of the composite ground with single drainage boundary, and the rate of consolidation considering the radial-vertical flow in granular column is faster than that considering the vertical flow only in granular column.


2019 ◽  
Vol 25 (2) ◽  
pp. 145-155 ◽  
Author(s):  
Yi Zhang ◽  
Wenbing Wu ◽  
Guoxiong Mei ◽  
Longchen Duan

To remedy the limitation that the conventional drainage boundary only considers two extreme cases of pervious and impervious boundaries, the consolidation theory of vertical drain is derived by applying the continuous drainage boundary, and its validity is also proven. Based on the obtained solutions, the excess pore water pressure and the average degree of consolidation under the continuous drainage boundary condition are analyzed, and the effect of the drainage capacity of the top surface, the smear effect and the well resistance on consolidation are explored. Furthermore, the practicality of this theory is also validated by the comparison with experimental data. Results confirm that the complete and continuous process of the ground top surface can be changed from no drainage to a complete drainage by adjusting the value of the interface parameter b. Higher value of the interface parameter b means a stronger water permeability of the foundation, resulting in a faster dissipation of excess pore water pressure and a faster consolidation. Meanwhile, the vertical drainage of the vertical drain cannot be neglected in calculation even though vertical drains are based on a horizontal seepage. Moreover, the smear effect and the well resistance play an important role on consolidation.


2016 ◽  
Vol 53 (9) ◽  
pp. 1460-1473 ◽  
Author(s):  
Dharma Wijewickreme ◽  
Achala Soysa

The cyclic shear response of soils is commonly examined using undrained (or constant-volume) laboratory element tests conducted using triaxial and direct simple shear (DSS) devices. The cyclic resistance ratio (CRR) from these tests is expressed in terms of the number of cycles of loading to reach unacceptable performance that is defined in terms of the attainment of a certain excess pore-water pressure and (or) strain level. While strain accumulation is generally commensurate with excess pore-water pressure, the definition of unacceptable performance in laboratory tests based purely on cyclic strain criteria is not robust. The shear stiffness is a more fundamental parameter in describing engineering performance than the excess pore-water pressure alone or shear strain alone; so far, no criterion has considered shear stiffness to determine CRR. Data from cyclic DSS tests indicate consistent differences inherent in the patterns between the stress–strain loops at initial and later stages of cyclic loading; instead of relatively “smooth” stress–strain loops in the initial parts of loading, nonsmooth changes in incremental stiffness showing “kinks” are notable in the stress–strain loops at large strains. The point of pattern change in a stress–strain loop provides a meaningful basis to determine the CRR (based on unacceptable performance) in cyclic shear tests.


2012 ◽  
Vol 193-194 ◽  
pp. 1010-1013
Author(s):  
Shu Qing Zhao

The construct to precast pile in thick clayey soil can cause the accumulation of excess pore water pressure. The high excess pore pressure can make soil, buildings and pipes surrounded have large deflection, even make them injured. Combining with actual projects, this paper presents an in-situ model test on the changes of excess pore water pressure caused by precast pile construct. It is found that the radius of influence range for single pile driven is about 15m,the excess pore water pressure can reach or even exceed the above effective soil pressure, and there are two relatively stable stages.


2012 ◽  
Vol 446-449 ◽  
pp. 1621-1626 ◽  
Author(s):  
Yan Mei Zhang ◽  
Dong Hua Ruan

A practical saturated sand elastic-plastic dynamic constitutive model was developed on the base of Handin-Drnevich class nonlinear lag model and multidimensional model. In this model, during the calculation of loading before soil reaches yielding, unloading and inverse loading, corrected Handin-Drnevich equivalent nonlinear model was adopted; after soil yielding, based on the idea of multidimensional model, the composite hardening law which combines isotropy hardening and follow-up hardening, corrected Mohr-Coulomb yielding criterion and correlation flow principle were adopted. A fully coupled three dimension effective stress dynamic analysis procedure was developed on the base of this model. The seismic response of liquefaction foundation reinforced by stone columns was analyzed by the developed procedure. The research shows that with the diameter of stone columns increasing, the excess pore water pressure in soil between piles decreases; with the spacing of columns increasing, the excess pore water pressure increases. The influence of both is major in middle and lower level of composite foundation.


Sign in / Sign up

Export Citation Format

Share Document