Heat Transfer Capacity of Composite Cooling System for Automobile Lithium-Ion Battery with Heat Pipe and Phase Change Materials

2014 ◽  
Vol 941-944 ◽  
pp. 2469-2473 ◽  
Author(s):  
Ming Guo Yu ◽  
Shu Hui Wang ◽  
Jia Qiang E ◽  
Xiao Feng Hu

Combining high thermal conductivity and high latent heat of phase change Materials (PCM) with heat pipe that has strong ability of heat transfer. A three-dimensional transient heat-transfer model was set up to simulate the temperature distribution in the lithium-ion battery under different conditions of heat generation rate and different ambient temperature. The study revealed that composite cooling system keep the battery temperature below 40.2°C on average working condition, the highest temperature was not exceed 48.7°C even under stressful conditions. However, use PCM without heat pipe as cooling system, the temperature was 2~6°C higher than composite cooling system at the same condition. The composite cooling system was superior to PCM cooling system, especially in high heat generation rate and high ambient temperature.

Heliyon ◽  
2021 ◽  
pp. e07773
Author(s):  
Danial Karimi ◽  
Md Sazzad Hosen ◽  
Hamidreza Behi ◽  
Sahar Khaleghi ◽  
Mohsen Akbarzadeh ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (68) ◽  
pp. 42909-42918 ◽  
Author(s):  
Ziyuan Wang ◽  
Xinxi Li ◽  
Guoqing Zhang ◽  
Youfu Lv ◽  
Cong Wang ◽  
...  

In battery thermal cycle tests PCM 3 prolonged the service life of PCM because the epoxy can effectively prevent leakage of paraffin during phasing change.


Sign in / Sign up

Export Citation Format

Share Document