The CPML for Hybrid Implicit-Explicit FDTD Method Based on Auxiliary Differential Equation

2014 ◽  
Vol 989-994 ◽  
pp. 1869-1872 ◽  
Author(s):  
Yun Fei Mao ◽  
Pu Hua Huang ◽  
Li Guo Ma

In this paper, an implementation of the complex-frequency-shifted perfectly matched layer (CPML) is developed for three-dimensional hybrid implicit-explicit (HIE) finite-difference time-domain (FDTD) method based on auxiliary differential equation (ADE). Because of the use of the ADE technique, this method becomes more straightforward and easier to implement. The formulations for the HIE-FDTD CPML are proposed. Numerical examples are given to verify the validity of the presented method. Results show that, both HIE-CPML and FDTD-CPML have almost the same reflection error, while their reflection error is about 30 dB, which is less than HIE Mur’s first-order results. The contour plots indicate that the maximum relative reflection as low as-72 dB is achieved by selecting and .

2014 ◽  
Vol 945-949 ◽  
pp. 2486-2489
Author(s):  
Qing Chao Nie ◽  
Bing Kang Chen

A finite-difference time-domain method based on the auxiliary differential equation (ADE) technique is used to obtain the formulation of 2-D TM wave propagation in lossy Lorentz media. In the paper, the reflected coefficients calculated by ADE-FDTD method and the exact theoretical result are better agreement.


2014 ◽  
Vol 568-570 ◽  
pp. 1749-1752
Author(s):  
Bing Kang Chen ◽  
Feng Guo

In order to study the reflection of electromagnetic wave in Lorentz media, A finite-difference time-domain method based on the auxiliary differential equation (ADE) technique is used to obtain the formulation of 2-D TM wave propagation in lossy Lorentz media. In 1-D case, the reflected coefficients calculated by ADE-FDTD method and exact theoretical result are excellent agreement. This expresses that the 2-D formulas of electromagnetic wave propagation in lossy Lorentz media are right. Furthermore, Plane wave reflected by Lorentz media layer is calculated and simulated. Results display that reflected effect is evident.


2013 ◽  
Vol 347-350 ◽  
pp. 1758-1762
Author(s):  
Lei Zhang ◽  
Tong Bin Yu ◽  
De Xin Qu ◽  
Xiao Gang Xie

The microstrip circuit is mostly analyzed in transform domain, because its equivalent circuit equation is often nonlinear differential equation, which is easily analyzed in transform domain relatively, but hardly did in time domain, so the analysis of microstrip circuit is a hard work in time domain. In this paper, the FDTD method is used to analyze the microstrip circuit in time domain, by transforming the nonlinear differential equation into time domain iterative equation, selecting suitable time step, and having an iterative computing, the time domain numerical solution can be solved. The FDTD method analyzing the microstrip circuit provides a new way of thought for analyzing microstrip circuit in time domain.


ISRN Optics ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Toshiaki Kitamura

A ridged-circular nanoaperture is investigated through three-dimensional (finite-difference time-domain) FDTD method. The motion equations of free electrons are inserted to analyze a metallic material. The electromagnetic field distributions of optical near-field around the aperture are investigated. The phase change disk illuminated by a near-field optical light through a ridged-circular nanoaperture is also analyzed. The far-field scattering patterns from the phase change disk and the crosstalk characteristics between plural marks are studied.


2014 ◽  
Vol 602-605 ◽  
pp. 3359-3362
Author(s):  
Chun Li Zhu ◽  
Jing Li

In this paper, output near fields of nanowires with different optical and structure configurations are calculated by using the three-dimensional finite-difference time-domain (3D FDTD) method. Then a nanowire with suitable near field distribution is chosen as the probe for scanning dielectric and metal nanogratings. Scanning results show that the resolution in near-field imaging of dielectric nanogratings can be as low as 80nm, and the imaging results are greatly influenced by the polarization direction of the incident light. Compared with dielectric nanogratings, metal nanogratings have significantly enhanced resolutions when the arrangement of gratings is perpendicular to the polarization direction of the incident light due to the enhancement effect of the localized surface plasmons (SPs). Results presented here could offer valuable references for practical applications in near-field imaging with nanowires as optical probes.


Sign in / Sign up

Export Citation Format

Share Document