Modified Harmony Search Algorithm for Unconstrained Numerical Optimization Problems

2014 ◽  
Vol 989-994 ◽  
pp. 2528-2531
Author(s):  
Hong Gang Xia ◽  
Qing Zhou Wang

Harmony search algorithm is a new meta-heuristic optimization method imitating the music improvisation process where musicians improvise their instruments’ pitches searching for a perfect state of harmony. To enable the harmony search algorithm to transcend its limited capability of local optimum, a modified harmony search algorithm is proposed in this paper. In the modified harmony search algorithm, the mutation operation of differential evolution algorithm is introduced into MHS algorithm, which improves its convergence. Several standard benchmark optimization functions are to be test and compare the performance of the MHS. The results revealed the superiority of the proposed method to the HS and recently developed variants.

2013 ◽  
Vol 365-366 ◽  
pp. 174-177
Author(s):  
Hong Gang Xia ◽  
Qing Zhou Wang

Harmony search (HS) algorithm is a good meta-heuristic intelligent optimization method and it does depend on imitating the music improvisation process to generate a perfect state of harmony. However, intelligent optimization methods is easily trapped into local optimal, HS is no exception. In order to modify the optimization performance of HS, a new variant of harmony search algorithm is proposed in this paper. The variant integrate the position updating of the particle swarm optimization algorithm with pitch adjustment operation, and dynamically adjust the key parameter pitch adjusting rate (PAR) and bandwidth (BW). Several standard benchmarks are to be tested. The numerical results demonstrated the superiority of the proposed method to the HS and recently developed variants (IHS, and GHS).


2013 ◽  
Vol 415 ◽  
pp. 353-356 ◽  
Author(s):  
Hong Gang Xia ◽  
Qing Liang Wang

Harmony search (HS) algorithm is a good meta-heuristic intelligent optimization method and it does depend on imitating the music improvisation process to generate a perfect state of harmony. However, intelligent optimization methods is easily trapped into local optimal, HS is no exception. In order to improve the performance of HS, a new variant of harmony search algorithm is proposed in this paper. The variant introduce a new crossover operation into HS, and design a strategy to adjust parameter pitch adjusting rate (PAR) and bandwidth (BW). Several standard benchmarks carried out to be tested. The numerical results demonstrated that the superiority of the proposed method to the HS and recently developed variants (IHS, and GHS).


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Longquan Yong ◽  
Sanyang Liu ◽  
Jianke Zhang ◽  
Quanxi Feng

Harmony search (HS) method is an emerging metaheuristic optimization algorithm. In this paper, an improved harmony search method based on differential mutation operator (IHSDE) is proposed to deal with the optimization problems. Since the population diversity plays an important role in the behavior of evolution algorithm, the aim of this paper is to calculate the expected population mean and variance of IHSDE from theoretical viewpoint. Numerical results, compared with the HSDE, NGHS, show that the IHSDE method has good convergence property over a test-suite of well-known benchmark functions.


2013 ◽  
Vol 415 ◽  
pp. 349-352
Author(s):  
Hong Wei Zhao ◽  
Hong Gang Xia

Differential evolution (DE) is a population-based stochastic function minimizer (or maximizer), whose simple yet powerful and straightforward features make it very attractive for numerical optimization. However, DE is easy to trapped into local optima. In this paper, an improved differential evolution algorithm (IDE) proposed to speed the convergence rate of DE and enhance the global search of DE. The IDE employed a new mutation operation and modified crossover operation. The former can rapidly enhance the convergence of the MDE, and the latter can prevent the MDE from being trapped into the local optimum effectively. Besides, we dynamic adjust the scaling factor (F) and the crossover rate (CR), which is aimed at further improving algorithm performance. Based on several benchmark experiment simulations, the IDE has demonstrated stronger convergence and stability than original differential (DE) algorithm and other algorithms (PSO and JADE) that reported in recent literature.


Author(s):  
Binghai Zhou ◽  
Jiahui Xu

To unify the merits of traditional in-plant parts logistics alternatives such as line stocking and kitting, the concept of line-integrated supermarkets is introduced to improve the part feeding in mixed-model assembly lines. First, the highly interdependent optimization problems of assigning stations and scheduling logistics operators are described, and mathematical models are established with the aim to minimize the fleet size of logistics operators and unit part delivery time as well. Together with particular theorems and lemmas, a nested dynamic programming is presented to obtain global optimum for small-sized instances while a modified harmony search algorithm is constructed for medium- or large-sized instances. Benefit from repeatedly dividing and reconstructing the harmony memory, the computation speed is significantly enhanced. Meanwhile, crossover and mutation operations effectively improve the diversity of solutions to overcome deficiencies such as limited search depth and tendencies to trapping into local optimum. Finally, experimental results validate that the proposed algorithm is of competitive performance in effectiveness and efficiency compared to some other basic or modified meta-heuristics.


2014 ◽  
Vol 989-994 ◽  
pp. 2532-2535
Author(s):  
Hong Gang Xia ◽  
Qing Zhou Wang

This paper presents a modified harmony search (MHS) algorithm for solving numerical optimization problems. MHS employs a novel self-learning strategy for generating new solution vectors that enhances accuracy and convergence rate of harmony search (HS) algorithm. In the proposed MHS algorithm, the harmony memory consideration rate (HMCR) is dynamically adapted to the changing of objective function value in the current harmony memory. The other two key parameters PAR and bw adjust dynamically with generation number. Based on a large number of experiments, MHS has demonstrated stronger convergence and stability than original harmony search (HS) algorithm and its two improved algorithms (IHS and GHS).


2014 ◽  
Vol 602-605 ◽  
pp. 3585-3588
Author(s):  
Hong Gang Xia ◽  
Qing Zhou Wang

To efficiently enhance the global search and local search of Differential Evolution algorithm ( DE), A modified differential evolution algorithm (MDE) is proposed in this paper. The MDE and the DE are different in two aspects. The first is the MDE Algorithm use a strategy of Pitch adjustment instead of original mutation operation, this can enhance the convergence of the MDE, the second is integrate the opposed-learning operation in the crossover operation to prevent DE from being trapped into local optimum. Four test functions are adopted to make comparison with original DE, the MDE has demonstrated stronger velocity of convergence and precision of optimization than differential DE algorithm and PSO.


2014 ◽  
Vol 989-994 ◽  
pp. 2536-2539
Author(s):  
Hong Gang Xia ◽  
Qing Zhou Wang

In this paper, a modified differential evolution algorithm (MDE) developed to solve unconstrained numerical optimization problems. The MDE algorithm employed random position updating and disturbance operation to replaces the traditional mutation operation. The former can rapidly enhance the convergence of the MDE, and the latter can prevent the MDE from being trapped into the local optimum effectively. Besides, we dynamic adjust the crossover rate (CR), which is aimed at further improving algorithm performance. Based on several benchmark experiment simulations, the MDE has demonstrated stronger convergence and stability than original differential (DE) algorithm and its two improved algorithms (JADE and SaDE) that reported in recent literature.


2013 ◽  
Vol 415 ◽  
pp. 309-313
Author(s):  
Hong Gang Xia ◽  
Qing Zhou Wang

In this paper, a new opposition-based modified differential evolution algorithm (OMDE) is proposed. This algorithm integrates the opposed-learning operation with the crossover operation to enhance the convergence of the algorithm and to prevent the algorithm from being trapped into the local optimum effectively. Besides, we employed a new strategy to dynamic adjust mutation rate (MR) and crossover rate (CR), which is aimed at further improving algorithm performance. Based on several benchmark functions tested, the OMDE has demonstrated stronger convergence and stability than original differential (DE) algorithm and its two improved algorithms (JADE and SaDE) that reported in recent literature.


Author(s):  
Nazmul Siddique ◽  
Hojjat Adeli

In the past three decades nature-inspired and meta-heuristic algorithms have dominated the literature in the broad areas of search and optimization. Harmony search algorithm (HSA) is a music-inspired population-based meta-heuristic search and optimization algorithm. The concept behind the algorithm is to find a perfect state of harmony determined by aesthetic estimation. This paper starts with an overview of the harmonic phenomenon in music and music improvisation used by musicians and how it is applied to the optimization problem. The concept of harmony memory and its mathematical implementation are introduced. A review of HSA and its variants is presented. Guidelines from the literature on the choice of parameters used in HSA for effective solution of optimization problems are summarized.


Sign in / Sign up

Export Citation Format

Share Document