Stability Analysis of Single-Pier Variable Cross-Section Box-Girder Continuous Bridge

2014 ◽  
Vol 989-994 ◽  
pp. 923-926
Author(s):  
Guan Sheng Yin ◽  
Jie Bai ◽  
Jun Jie Feng

On the basis of Umansky box-girder torsion theory, the software of ANSYS is applied to simulate related engineering model. In considering a variety of live load conditions, the lateral stability of multi-span single-pier variable cross-section box-girder under torsion eccentric load is analyzed. Analysis results reveal that under different working conditions, the factors affecting the transverse stability of the bridge and the proportion of the value on each, such as gravity, the span ratio and the distance between support are different; When the overload ratio is 2 times larger, the bridge stability safety coefficient decreases along the curve and changes rapidly. In the future design of this kind of bridge, the overall lateral stability should be paid much more attention. Some methods and suggestions about how to prevent the emergence of security and stability problems are put forward in the end.

2012 ◽  
Vol 446-449 ◽  
pp. 1194-1198
Author(s):  
Min Xiang ◽  
Cong Juan Yang

The construction with hanging basket eccentric loading was studied for the cantilever casting of a 32m +48 m +32 m continuous box girder. The calculation of center deflecting angles of cantilever box girders with variable cross-section due to pure torsion was derived, and correspondingly a program was developed to calculate this formula. An analysis model of cantilever casting continuous beam bridge with hanging basket eccentric loading was established based on finite elements software, and the shear stress, the longitudinal normal stress and the combined stress of different section were analyzed under different construction process. The torsional effect due to hanging basket eccentric loading was studied and the results are helpful to guide the construction in practice.


2012 ◽  
Vol 157-158 ◽  
pp. 395-399 ◽  
Author(s):  
Xiao Biao Shan ◽  
Nai Ming Qi ◽  
Li Li Wang ◽  
Tao Xie

This paper studied the key factors affecting the amplitude of a composite ultrasonic wiredrawing vibration system, for designing a powerful ultrasonic vibration system. The finite element analysis (FEA) was performed. The results showed that the variable cross-section shapes of horns and the angles between the connection of both ends of the cross-section and the center line had great effects on the amplitude of an ultrasonic vibration system. In order to valid the theoretical result, the experiments were carried out on a composite ultrasonic vibration system. The experimental result demonstrated that the conical variable cross-section rods used in an ultrasonic vibration system produced large amplitude.


2014 ◽  
Vol 587-589 ◽  
pp. 1631-1636
Author(s):  
Zheng Jiu Zhao ◽  
Jing Hong Gao

Taking a bridge of 160m long variable cross-section prestressed continuous curved box-girder as the research object and analyzing the cross-sectional design of axis with axial symmetrical or axial non-symmetrical to research the structure forces change of the upper part of bridge in different curvature. In order to test and verify the variable cross-section of prestressed continuous curved box-girder bridge is safe and reliable via cross-sectional design with axial symmetrical instead of axial non-symtrical within a radius of curvature of the interval. Creating the straight bridge and curved bridge models with different radius of curvature in same span by Midas/Civil to compare their structure forces.


Sign in / Sign up

Export Citation Format

Share Document