Microstructural Design for Attaining High-Strain-Rate Superplasticity in Oxide Materials

2006 ◽  
Vol 45 ◽  
pp. 923-932
Author(s):  
Keijiro Hiraga ◽  
Byung Nam Kim ◽  
Koji Morita ◽  
Tohru Suzuki ◽  
Yoshio Sakka

Factors limiting the strain rate of superplastic deformation in oxide ceramics are discussed from existing knowledge about the mechanisms of high-temperature plastic deformation and intergranular cavitation. The discussion leads to the following guide: simultaneously controlling the initial grain size, diffusivity, dynamic grain growth, homogeneity of microstructure and the number of residual defects is essential to attain high-strain-rate superplasticity. Along this guide, high-strain-rate superplasticity (HSRS) is attainable in some oxides consisting of tetragonal zirconia, α-alumina and a spinel phase: tensile ductility reached 300-2500% at a strain rate of 0.01-1.0 s-1. Post-deformation microstructure indicates that some secondary phases may suppress cavitation damage and thereby enhance HSRS. The guide is also essential to lower the limit of deformation temperature for a given strain rate. In monolithic tetragonal zirconia, grain-size refinement combined with doping of aliovalnt cations such as Mg2+, Ti4+ and Al3+ led to HSRS at 1350 °C.

2012 ◽  
Vol 735 ◽  
pp. 271-277 ◽  
Author(s):  
Tomoyuki Kudo ◽  
Akira Goto ◽  
Kazuya Saito

Blow forming accompanied with superplasticity makes possible the forming of complex parts, which cannot be formed by cold press forming. The conventional superplastic AA5083 alloy ‘ALNOVI-1’ developed by the Furukawa-Sky Aluminum Corp. shows high superplasticity because of its fine grain and is widely used for blow forming. However, for mass production of components, an Al-Mg alloy with finer-sized grains is needed. In this research, the newly developed high Mn version of the Al-Mg alloy ‘ALNOVI-U’ is used, and this material possesses grains finer than those of the conventional AA5083 alloy. The effects of finer grain size on the blow formability at high strain rates over 10-2/s and the properties of the resulting moldings were studied.


2017 ◽  
Author(s):  
N. Bonora ◽  
N. Bourne ◽  
A. Ruggiero ◽  
G. Iannitti ◽  
G. Testa

1990 ◽  
Vol 196 ◽  
Author(s):  
Norio Furushiro ◽  
Shigenori Hori

ABSTRACTIt has been expected that “High rate superplastic materials” will be developed for industrial applications. The Dorntype equation for high temperature deformation suggests that strain rate can be increased if the grain size is decreased. This means that grain refinement can effectively establish high strain rate superplastic materials.It is well known that a high degree of grain size refinement will result from the addition of zirconium to Al-base alloys. Powder-metallurgical processing with rapidly solidified powders is also available for the improvement of superplasticity by both the refinement of the solidified structure and the maintenance of the stable fine structure of a 7475 Al alloy during recrystallization and deformation. Therefore. P/M 7475 Al alloys containing Zr up to 0.9 wt% were selected as candidate specimens. The objective of the present paper includes the clarification of the role and the effective amount of Zr to obtain high strain rate superplastic materials. As a result, the addition of 0.3%Zr or more is effective in grain refinement of the P/M 7475 Al alloy. However, alloys containing 0.7 and 0.9 wt%Zr only show superplasticity at 793K. The optimum strain rate is shifted to a higher range with increasing Zr. The alloy of 7475 Al-0.9%Zr shows the maximum elongation of 900% at the remarkably high strain rate of 3.3×10−1 s−1.The deformation mechanism of such high stain rate superplasticity will be discussed briefly, by considering the effect of the fine particles of Zr on superplastic behavior.


2017 ◽  
Vol 680 ◽  
pp. 329-337 ◽  
Author(s):  
Alberto Orozco-Caballero ◽  
Marta Álvarez-Leal ◽  
Paloma Hidalgo-Manrique ◽  
Carmen María Cepeda-Jiménez ◽  
Oscar Antonio Ruano ◽  
...  

1999 ◽  
Vol 601 ◽  
Author(s):  
S. X. McFadden ◽  
R. S. Mishra ◽  
A. K. Mukherjee

AbstractThe phenomenon of superplasticity is explored in the range of high strain rate for both nanocrystalline and microcrystalline materials. True tensile superplasticity has been demonstrated in nanocrystalline grain size range. The difference in the details of such superplasticity between nanocrystalline and microcrystalline state is emphasized.


1991 ◽  
Vol 22 (10) ◽  
pp. 2349-2357 ◽  
Author(s):  
Charles G. Schmidt ◽  
Robert D. Caligiuri ◽  
Jacques H. Giovanola ◽  
David C. Erlich

Sign in / Sign up

Export Citation Format

Share Document