Origin of the Difference in Phase Transition Behavior between TwoType of All-Organic Radical Liquid Crystals

2008 ◽  
Vol 55 ◽  
pp. 42-45
Author(s):  
Yoshiaki Uchida ◽  
Rui Tamura ◽  
Naohiko Ikuma ◽  
Satoshi Shimono ◽  
Hiroki Takahashi ◽  
...  

We have synthesized two types of all-organic radical liquid crystalline (LC) compounds, trans-2-alkoxyphenyl-5-[4-(4-alkoxybenzenecarbonyloxy)phenyl]-2,5-dimethylpyrrolidine-1-oxy (1) and 4-alkoxyphenyl trans-4-[5-(4-alkoxyphenyl)-2,5-dimethylpyrrolidine-1-oxy-2-yl]benzoate (2) and have fully characterized their LC properties. Although the only difference in the molecular structure between 1 and 2 is the orientation of a binding group connecting the core portion and one side-chain (-OCO- and -COO- for 1 and 2), the racemic or enantiomerically enriched 2 showed an SmA phase, or SmA* and TGBA* phases, which were not observed for 1, besides N and SmC, or N* and SmC* phases, respectively. Here we discuss the origin of these differences on the basis of their crystal structures determined by X-ray crystallographic analysis.

2002 ◽  
Vol 80 (8) ◽  
pp. 1162-1165 ◽  
Author(s):  
B Henrissat ◽  
G K Hamer ◽  
M G Taylor ◽  
R H Marchessault

A series of dodecyl 1-thio-β-D-glycosides has been synthesized and characterized (DSC, NMR, CP MAS, X-ray diffraction) as possible new marking materials with liquid-crystalline properties. These compounds undergo solid to liquid crystal phase transitions at various temperatures, which depend on the nature of the carbohydrate part of the structure. Their liquid-crystalline phases show extreme shear thinning behaviour.Key words: liquid crystal, powder X-ray diffraction, phase transition, thioglycoside, solid-state NMR, marking material


2015 ◽  
Vol 44 (36) ◽  
pp. 16036-16044 ◽  
Author(s):  
Emily Reynolds ◽  
Gordon J. Thorogood ◽  
Maxim Avdeev ◽  
Helen E. A. Brand ◽  
Qinfen Gu ◽  
...  

High temperature synchrotron X-ray and neutron diffraction powder diffraction studies of the uranium perovskites Ba2CaUO6and BaSrCaUO6reveal unusual phase transition behavior associated with the progressive loss of cooperative octahedral tilting.


1980 ◽  
Vol 33 (6) ◽  
pp. 1323 ◽  
Author(s):  
JB Bremner ◽  
EJ Browne ◽  
PE Davies ◽  
CLWAH Raston

The heterocyclic derivatives, 8,9-dimethoxy-3-methyl-1-phenyl-3,4,5,6- tetrahydro-1H-2,3-benzoxazocine(3a) and 9,10-dimethoxy-3-methyl-1- phenyl-1,3,4,5,6,7-hexahydro-2,3-benzoxazonine (3b),examples of two new ring systems, have been prepared by Meisenheimer rearrangement of the corresponding 2-benzazepine and 2-benzazocine N-oxide derivatives (2a) and (2b). The Bischler-Napieralski-type cyclization reaction was used in the preparation of the tertiary amine precursors of these N-oxides reaction conditions for the cyclization were critical and phosphorus oxychloride in refluxing butanenitrile was found to give the best yields of the seven- or eight-membered cyclic imine intermediates. Reductive cleavage of the benzoxazocine derivative (3a) with zinc in acetic acid followed by N-methylation gave the expected product, [2-{3- (dimethylamino)propyl}-4,5-di-methoxyphenyl]phenylmethanol (12). The crystal and molecular structure of (3a) has been determined by X-ray crystallographic analysis.


2017 ◽  
Vol 41 (14) ◽  
pp. 6514-6522 ◽  
Author(s):  
Yuki Arakawa ◽  
Yukito Sasaki ◽  
Kazunobu Igawa ◽  
Hideto Tsuji

A novel class of hydrogen bonding liquid crystalline benzoic acids with alkylthio groups was established and their phase transition behavior was investigated in detail.


2003 ◽  
Vol 30 (5) ◽  
pp. 585-589 ◽  
Author(s):  
Eduardo A. Soto-Bustamante ◽  
Rafael Vergara-Toloza ◽  
Danilo Saldaño-Hurtado ◽  
Patricio Navarrete-Encina
Keyword(s):  

Crystals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 473 ◽  
Author(s):  
Malay Kumar Das ◽  
Barnali Barman ◽  
Banani Das ◽  
Věra Hamplová ◽  
Alexey Bubnov

The tilted ferroelectric SmC* phase of three structurally different series having three aromatic rings in the core structure connected by ester groups with different end alkyl chain lengths, all of which are derived from lactic acid, have been observed by broadband dielectric spectroscopy. Introduction of structural variations within the liquid crystalline compounds has led to the formation of chiral nematic N*, or the paraelectric orthogonal SmA* phase at higher temperatures. The dielectric spectra strongly depend both on the temperature as well as the specific molecular structure of the self-assembling compounds possessing the ferroelectric polar order. The results reveal a strong Goldstone mode in the ferroelectric SmC* phase with ~kHz relaxation frequency. In the SmC* phase, the real and imaginary parts of the complex permittivity increase up to certain temperature near the SmC*-N*/SmA* transition and then decrease with increasing temperature, perhaps due to the disruption of the molecular domains at the onset of the SmA*/N* phase transition. The dielectric strength attains a maximum value in the SmC* phase and then decreases near the SmA*/N* phase transition. The dielectric strength is also influenced by the lengths of the alkyl chain and the nature of the connecting unit of the constituent molecules. The relaxation time and the relaxation frequency are found to vary with the molecular structure of the studied ferroelectric compounds.


2012 ◽  
Vol 1403 ◽  
Author(s):  
Christain Melchert ◽  
M. Behl ◽  
A. Lendlein

ABSTRACTThe control of phase transition behavior in liquid crystalline polymers could enable potential application in the field of actuators and sensors by enabling a higher actuator performance of liquid crystalline elastomers (LCE). In this context the phase transition behavior of siloxane based liquid crystalline copolymers synthesized from 1,1,3,3-tetramethyldisiloxane, 2-methyl-1,4-bis[4-(4-pentenyloxy)benzoyl]hydroquinone (M-MeHq), and 2-tert-butyl-1,4-bis[4-(4-pentenyloxy)benzoyl]hydroquinone (M-tBHq) was explored. The selected monomers provided different thermal stabilities of the nematic phase, while the non-flexible siloxane spacer suppressed a smectic phase. The mesogenic properties were studied by means of differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and wide angle X-ray scattering (WAXS). With increasing fraction of M-MeHq the nematic phase of the copolymer was stabilized and a tailoring of relatively low TNI was achieved.


2009 ◽  
Vol 180 (17-19) ◽  
pp. 1034-1039 ◽  
Author(s):  
Takeshi Ohzeki ◽  
Shinya Hasegawa ◽  
Misa Shimizu ◽  
Takuya Hashimoto

Sign in / Sign up

Export Citation Format

Share Document