Оbtaining of Lightweight Geopolymer Using Ash from Thermal Power Plants

2014 ◽  
Vol 92 ◽  
pp. 68-73
Author(s):  
Yancho Hristov ◽  
Yordan Kostadinov ◽  
Plamen Pashev ◽  
Bogdan Bogdanov

A lightweight inorganic polymer is obtained using by ash from thermal power plants and lightweight aggregate from perlite . This inorganic material is activated using small amounts of sodium hydroxide and sodium silicate solution. In addition, porosity and water absorption were determined. Results showed that the lightweight geopolymer blocks with satisfactory strength and density could be made. The 28-day compressive strength of 5.2–13.8 MPa, density of 1075–1345 kg/m3, water absorption of 10–28% and porosity of 15–32% obtained. It can be used as lightweight geopolymer concrete for partition walls.

2012 ◽  
Vol 560-561 ◽  
pp. 580-585
Author(s):  
Bogdan Iliev Bogdanov ◽  
Yancho Hristov ◽  
Dimitar Petrov Georgiev ◽  
Irena Markovska

A lightweight inorganic polymer is obtained using ash from thermal power plants, metakaolinite and lightweight aggregate. This inorganic material is activated using small amounts of sodium hydroxide and sodium silicate solution. Processing parameters and various curing conditions, such as curing temperature, curing time and moisture, are investigated. Compressive strength, rate of water absorption and density of each sample were measured.


2019 ◽  
Vol 296 ◽  
pp. 105-111 ◽  
Author(s):  
Quang Minh Do ◽  
Thu Ha Bui ◽  
Hoc Thang Nguyen

This paper illustrates a special investigation on geopolymer concrete synthesized from fly ash, sand, coarse aggregates (solid phases) in conditions of sodium silicate solution and seawater (liquid phases). The mixtures of geopolymer concrete were designed with proportion changes of among materials to evaluate effects of the proportions to engineering properties of products. The specimens were molded into cylinder with 200 mm in length and 100 mm in diameter, and then cured at room condition (28 °C, 80 % of humidity) for testing engineering properties for 7 days, 28 days, 90 days, and 180 days. The engineering properties of geopolymer concrete samples included compressive strength (MPa), water absorption (kg/m3), and volumetric weight (kg/m3). The results showed that the fly ash-based geopolymer concrete using sodium silicate solution and seawater was very good performance with value of 180 day-compressive strength at 58 MPa, water absorption and volumetric weight were at 180 kg/m3 and 2200 kg/m3, respectively.


2019 ◽  
Vol 12 (1) ◽  
pp. 22-28
Author(s):  
V. Ye. Mikhailov ◽  
S. P. Kolpakov ◽  
L. A. Khomenok ◽  
N. S. Shestakov

One of the most important issues for modern domestic power industry is the creation and further widespread introduction of solid propellant energy units for super-critical steam parameters with high efficiency (43–46%) and improved environmental parameters. This will significantly reduce the use of natural gas.At the same time, one of the major drawbacks of the operation of pulverized coal power units is the need to use a significant amount of fuel oil during start-up and shutdown of boilers to stabilize the burning of the coal torch in the variable boiler operating modes.In this regard, solid fuel TPPs need to be provided with fuel oil facilities, with all the associated problems to ensure the performance (heating of fuel oil in winter), reliability and safety. All of the above problems increase both the TPP capital construction costs, and the electricity generating cost.A practical solution to the above problems at present is the use of a plasma technology for coal torch ignition based on thermochemical preparation of fuel for combustion. The materials of the developments of JSC “NPO CKTI” on application of plasmatrons in boilers of thermal power plants at metallurgical complexes of the Russian Federation are also considered.Plasma ignition systems for solid fuels in boilers were developed by Russian specialists and were introduced at a number of coal-fi red power plants in the Russian Federation, Mongolia, North Korea, and Kazakhstan. Plasma ignition of solid fuels is widely used in China for almost 30% of power boilers.The introduction of plasma-energy technologies will improve the energy efficiency of domestic solid-fuel thermal power plants and can be widely implemented in the modernization of boilers.During the construction of new TPPs, the construction of fuel oil facilities can be abandoned altogether, which will reduce the capital costs of the construction of thermal power plants, reduce the construction footprint, and increase the TPP safety.


Author(s):  
Ye. G. Polenok ◽  
S. A. Mun ◽  
L. A. Gordeeva ◽  
A. A. Glushkov ◽  
M. V. Kostyanko ◽  
...  

Introduction.Coal dust and coal fi ring products contain large amounts of carcinogenic chemicals (specifically benz[a]pyrene) that are different in influence on workers of coal mines and thermal power plants. Specific immune reactions to benz[a]pyrene therefore in these categories of workers can have specific features.Objective.To reveal features of antibodies specifi c to benz[a]pyrene formation in workers of coal mines and thermal power plants.Materials and methods.The study covered A and G class antibodies against benz[a]pyrene (IgA-Bp and IgG-Bp) in serum of 705 males: 213 donors of Kemerovo blood transfusion center (group 1, reference); 293 miners(group 2) and 199 thermal power plant workers (group 3). Benz[a]pyrene conjugate with bovine serum albumin as an adsorbed antigen was subjected to immune-enzyme assay.Results.IgA-Bp levels in the miners (Me = 2.7) did not differ from those in the reference group (Me = 2.9), but in the thermal power plant workers (Me = 3.7) were reliably higher than those in healthy men and in the miners (p<0.0001). Levels of IgG-Bp in the miners (Me = 5.0) appeared to be lower than those in the reference group (Me = 6.4; (p = 0.05). IgG-Bb level in the thermal power plantworkers (Me = 7.4) exceeded the parameters in the healthy donors and the miners (p<0.0001). Non-industrial factors (age and smoking) appeared tohave no influence on specific immune reactions against benz[a]pyrene in the miners and the thermal power plant workers.Conclusions.Specific immune reactions against benz[a]pyrene in the miners and the thermal power plant workers are characterized by peculiarities: the miners demonstrate lower levels of class A serum antibodies to benz[a]pyrene; the thermal power plant workers present increased serum levels of class G antibodies to benz[a]pyrene. These peculiarities result from only the occupational features, but do not depend on such factors as age, smoking and length of service at hazardous production. It is expedient to study specific immune reactions to benz[a]pyrene in workers of coal mines and thermal power plants, to evaluate individual oncologic risk and if malignancies occur.


2019 ◽  
Author(s):  
Matthias Schnellmann ◽  
David Reiner ◽  
Stuart Scott ◽  
Chi Kong Chyong

Sign in / Sign up

Export Citation Format

Share Document