Specific Features of Jahn-Teller Structure Phase Transitions in Nanocrystalline Materials

2009 ◽  
Vol 283-286 ◽  
pp. 53-58 ◽  
Author(s):  
Anatoly Yakovlevich Fishman ◽  
M.A. Ivanov ◽  
S.A. Petrova ◽  
Nickolai Tkachev ◽  
Vladimir Borisovich Vykhodets ◽  
...  

Specific features of the structural phase transitions of the first order were investigated in nanosized crystals with Jahn-Teller ions. As an example the phase transitions of martensite type with changes in symmetry from a cubic to a tetragonal one have been considered. The Kanamori model was used to take into account the size of nanocrystallites and the distribution of cations over non-equivalent crystallographic sublattices in such systems. It was shown the temperature and the latent heat of the transition decrease significantly for the nanoscaled grains. A possibility of multi-phase state for nanocrystalline materials was considered.

2009 ◽  
Vol 79 (5) ◽  
Author(s):  
Shiliang Li ◽  
Clarina de la Cruz ◽  
Q. Huang ◽  
Y. Chen ◽  
J. W. Lynn ◽  
...  

2013 ◽  
Vol 200 ◽  
pp. 93-99 ◽  
Author(s):  
Natalia Ohon ◽  
Leonid Vasylechko ◽  
Yurii Prots ◽  
Marcus Schmidt ◽  
Caroline Curfs

Phase and structural behaviour in the NdAlO3–EuAlO3 system has been studied in the whole concentration range. Depending on x two kinds of solid solutions Nd1‑xEuxAlO3 exist at room temperature: one with rhombohedral (x < 0.15) and one with orthorhombic (x≈ 0.15–0.20, where the co-existence of both phases was observed. First-order structural phase transitions Pbnm↔Rc has been detected in Nd1-xEuxAlO3 with x = 0.3, 0.4, 0.6 at 520 K, 627 K and 988 K, respectively. Based on the experimental and literature data, the phase diagram of the pseudo-binary system NdAlO3–EuAlO3 has been constructed.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
P. S. Whitfield ◽  
N. Herron ◽  
W. E. Guise ◽  
K. Page ◽  
Y. Q. Cheng ◽  
...  

Abstract We have examined the crystal structures and structural phase transitions of the deuterated, partially deuterated and hydrogenous organic-inorganic hybrid perovskite methyl ammonium lead iodide (MAPbI3) using time-of-flight neutron and synchrotron X-ray powder diffraction. Near 330 K the high temperature cubic phases transformed to a body-centered tetragonal phase. The variation of the order parameter Q for this transition scaled with temperature T as Q ∼ (Tc−T)β, where Tc is the critical temperature and the exponent β was close to ¼, as predicted for a tricritical phase transition. However, we also observed coexistence of the cubic and tetragonal phases over a range of temperature in all cases, demonstrating that the phase transition was in fact first-order, although still very close to tricritical. Upon cooling further, all the tetragonal phases transformed into a low temperature orthorhombic phase around 160 K, again via a first-order phase transition. Based upon these results, we discuss the impact of the structural phase transitions upon photovoltaic performance of MAPbI3 based solar cells.


Sign in / Sign up

Export Citation Format

Share Document