The Effect of Type and Height of Piers on the Seismic Behavior of Reinforced Concrete Bridges

Author(s):  
Mohamed Cherif Djemai ◽  
Mahmoud Bensaibi ◽  
Fatma Zohra Halfaya

Bridges are commonly used lifelines; they play an important role in the economic activity of a city or a region and their role can be crucial in a case of a seismic event since they allow the arrival of the first aid. Reinforced concrete (RC) bridges are worldwide used type view their durability, flexibility and economical cost. In fact, their behavior under seismic loading was the aim of various studies. In the present study the effect of two structural parameters i.e. the height and the type of piers of reinforced concrete bridges on seismic response is investigated. For that reason, different multi-span continuous girder bridges models with various geometrical parameters are considered. Then, non-linear dynamic analyses are performed based on two types of piers which are: multiple columns bent and wall piers with varying heights. In this approach, a serie of 40 ground motions records varying from weak to strong events selected from Building Research Institute (BRI) strong motion database are used including uncertainty in the soil and seismic characteristics. Modelling results put most emphasis on the modal periods and responses of the top pier displacements, they show the influence of the considered parameters on the behavior of such structures and their impact on the strength of reinforced concrete bridges.

2017 ◽  
Vol 10 (1) ◽  
pp. 192-205
Author(s):  
B. F. ROCHA ◽  
M. SCHULZ

Abstract This research investigates reinforced concrete plates and shells with skew reinforcement whose directions are not aligned with the principal internal forces. Two normal forces, one tangential force, two bending moments, and one twisting moment are defined in the plane of the element. The analysis includes two shear forces in the transverse direction. The membrane and flexural forces are distributed between two panels at the upper and lower faces of the element. The smeared cracking model, equilibrium considerations, and plasticity approach yield the design equations of the skew reinforcement. The slab reinforcement of flat bridges, with and without lateral beams and girder bridges are compared considering different skew angles. The minimum reinforcement criteria of skew meshes are discussed. The results show that skew reinforcement yields higher steel and concrete stresses.


Author(s):  
I.Yu. Belutsky ◽  
◽  
I.V. Lazarev ◽  

Abstract. The publication shows the effectiveness of applying the principle of temporary continuity by combining split span structures into acontinuous couplingusing a temporary joint. The method can be viewed as an option for effort regulation, creating abearing capacity reserveinload-bearing constructions within the span structures of bridges. The calculations provided show the effect on stress rate and bending moment in split span structurescombined into a double-spancontinuous coupling by a temporary joint.


Sign in / Sign up

Export Citation Format

Share Document