mr dampers
Recently Published Documents


TOTAL DOCUMENTS

401
(FIVE YEARS 53)

H-INDEX

28
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xiufang Lin ◽  
Weiqing Lin

The control strategy for protecting adjacent structures from earthquake excitations is gaining increasing significance. In this study, to improve the seismic performance, a semiactive control strategy using magnetorheological (MR) dampers to couple the adjacent structures is proposed. In this control strategy, to fully exploit the performance of MR dampers, the allocation (including the locations and the number) and fuzzy logic controller (FLC) system of MR dampers are simultaneously optimally designed by whale optimization algorithm (WOA) with a special encoding scheme. Simulation results verify that WOA provides competitive performance compared with the other three metaheuristic algorithms in terms of solution quality and robustness. Compared with other semiactive control methods including on-off, linear quadratic regulator-clipped voltage law, and WOA-FLC (optimal allocation is not considered) methods, by using much less MR dampers, the proposed control strategy can exhibit more excellent overall performance in terms of reducing the seismic responses and mitigating pounding.


Author(s):  
Gaoyu Liu ◽  
Fei GAO ◽  
Wei-Hsin Liao

Abstract Making full use of the magnetically controllable rheological properties of magnetorheological (MR) fluid, MR actuators have been applied in many engineering fields. To adapt to different application scenarios, parameters of MR actuators often need to be optimized. Previous MR actuator optimization was focused on finding optimal combinations of geometric dimensions and physical parameters that meet certain requirements. The parts with optimized dimensions were still in regular shape, which might not bring optimal damping performance. Therefore, in this paper, shape optimization of MR damper piston based on parametric curve is performed for the first time. First, the regional magnetic saturation problem in the previous prototype is stated. Then, the MR damper with normal piston is simulated as a reference. Later, Bezier curve, one of the typical parametric curves, is used to form the piston with optimized parameters, and the MR damper with optimized piston is also simulated. Finally, prototypes of the MR dampers with normal and optimized pistons are fabricated and tested. Compared with the MR damper with normal piston, the one with optimized piston has larger field dependent force and total damping force under relatively large current, with about 52% and 24% maximum increasing percentage, respectively. The controllable force range of the MR damper with optimized piston is also larger than that with normal piston.


Author(s):  
Fanghui Xu ◽  
Dawei Dong ◽  
Yan Huang ◽  
Rui Zhang ◽  
Shizhe Song ◽  
...  

The diesel multiple unit (DMU) has been widely used in high-speed railway service due to its flexibility and economy. Considering the broadband and complex vibration generated by DMU power package, the advanced semi-active suspension with magnetorheological (MR) dampers is introduced to promote anti-vibration performance. In this work, a comprehensive optimal design approach for MR damper used in DMU power package is proposed. Quasi-static modeling process is conducted to obtain MR damper's low-frequency outputs, while its high-frequency damping forces are calculated by physical modeling considering the fluid compressibility and piston assembly inertia. Then the objective functions and optimization variables are determined. Based on response surface and linear correlation analysis, the influence of the optimal variables on the objective functions is discussed. Using reference-point based nondominated sorting approach (NSGA-III), the evolutionary many-objective optimization is conducted. In addition, magnetic design is incorporated into the optimal process to ensure the magnetic flux density in the effective working area. Finally, an optimized MR damper prototype is manufactured and tested. By comparing the experimental damping force with calculated results in both low-frequency and high-frequency ranges, the effectiveness of the presented optimal method for MR dampers is validated.


2021 ◽  
Vol 11 (19) ◽  
pp. 9339
Author(s):  
Bhre Wangsa Lenggana ◽  
Ubaidillah Ubaidillah ◽  
Fitrian Imaduddin ◽  
Seung-Bok Choi ◽  
Yusep Muslih Purwana ◽  
...  

Building structures are vulnerable to the shocks caused by earthquakes. Buildings that have been destroyed by an earthquake are very detrimental in terms of material loss and mental trauma. However, technological developments now enable us to anticipate shocks from earthquakes and minimize losses. One of the technologies that has been used, and is currently being further developed, is a damping device that is fitted to the building structure. There are various types of damping devices, each with different characteristics and systems. Multiple studies on damping devices have resulted in the development of various types, such as friction dampers (FDs), tuned mass dampers (TMDs), and viscous dampers (VDs). However, studies on attenuation devices are mostly based on the type of system and can be divided into three categories, namely passive, active, and semi-active. As such, each type and system have their own advantages and disadvantages. This study investigated the efficacy of a magnetorheological (MR) damper, a viscous-type damping device with a semi-active system, in a simulation that applied the damper to the side of a building structure. Although MR dampers have been extensively used and developed as inter-story damping devices, very few studies have analyzed their models and controls even though both are equally important in controlled dampers for semi-active systems. Of the various types of models, the Bingham model is the most popular as indicated by the large number of publications available on the subject. Most models adapt the Bingham model because it is the most straightforward of all the models. Fuzzy controls are often used for MR dampers in both simulations and experiments. This review provides benefits for further investigation of building damping devices, especially semi-active damping devices that use magnetorheological fluids as working fluids. In particular, this paper provides fundamental material on modeling and control systems used in magnetorheological dampers for buildings. In fact, magnetorheological dampers are no less attractive than other damping devices, such as tuned mass dampers and other viscous dampers. Their reliability is related to the damping control, which could be turned into an interesting discussion for further investigation.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2230
Author(s):  
Yingying Liao ◽  
Weiguo Zhao ◽  
Liying Wang

Magnetorheological (MR) dampers play a crucial role in various engineering systems, and how to identify the control parameters of MR damper models without any prior knowledge has become a burning problem. In this study, to identify the control parameters of MR damper models more accurately, an improved manta ray foraging optimization (IMRFO) is proposed. The new algorithm designs a searching control factor according to a weak exploration ability of MRFO, which can effectively increase the global exploration of the algorithm. To prevent the premature convergence of the local optima, an adaptive weight coefficient based on the Levy flight is designed. Moreover, by introducing the Morlet wavelet mutation strategy to the algorithm, the mutation space is adaptively adjusted to enhance the ability of the algorithm to step out of stagnation and the convergence rate. The performance of the IMRFO is evaluated on two sets of benchmark functions and the results confirm the competitiveness of the proposed algorithm. Additionally, the IMRFO is applied in identifying the control parameters of MR dampers, the simulation results reveal the effectiveness and practicality of the IMRFO in the engineering applications.


Author(s):  
Guoliang Hu ◽  
Haonan Qi ◽  
Miao Chen ◽  
Lifan Yu ◽  
Gang Li ◽  
...  

In this paper, a magnetorheological (MR) damper with multiple axial fluid flow channels is developed to solve the conflicts between limitation of size dimension and improvement of damping performance. By setting symmetrical excitation coils at both ends of the MR damper, the effective fluid flow channels of the proposed MR damper are significantly lengthened. In order to investigate the distributions of magnetic flux lines and magnetic flux density of the MR damper, the finite element model of the MR damper is established by using ANSYS software. Moreover, an optimization method combining BP neural network and particle swarm optimization (PSO) is proposed to improve the magnetic field utilization of the designed damper, and the damping performances of initial and optimal MR dampers are also experimentally tested. The test results show that the output damping force of initial and optimal MR dampers is 3.13 kN and 5.98 kN respectively under the applied current of 1.8 A, increasing by 91.1%, and the dynamic adjustable range is 11.5 and 16.1 respectively, increasing by 40.0%. It is found that the damping performance of the proposed MR damper is significantly improved.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ming Huang ◽  
Zhiqiang Zhang ◽  
Peizi Wei ◽  
Fei Liu ◽  
Youliang Ding

PurposeIn order to make sure of the safety of a long-span suspension bridge under earthquake action, this paper aims to study the traveling wave effect of the bridge under multi-support excitation and optimize the semi-active control schemes based on magneto-rheological (MR) dampers considering reference index as well as economical efficiency.Design/methodology/approachThe finite element model of the long-span suspension bridge is established in MATLAB and ANSYS software, which includes different input currents and semi-active control conditions. Six apparent wave velocities are used to conduct non-linear time history analysis in order to consider the seismic response influence in primary members under traveling wave effect. The parameters α and β, which are key parameters of classical linear optimal control algorithm, are optimized and analyzed taking into account five different combinations to obtain the optimal control scheme.FindingsWhen the apparent wave velocity is relatively small, the influence on the structural response is oscillatory. Along with the increase of the apparent wave velocity, the structural response is gradually approaching the response under uniform excitation. Semi-active control strategy based on MR dampers not only restrains the top displacement of main towers and relative displacement between towers and girders, but also affects the control effect of internal forces. For classical linear optimal control algorithm, the values of two parameters (α and β) are 100 and 8 × 10–6 considering the optimal control effect and economical efficiency.Originality/valueThe emphasis of this study is the traveling wave effect of the triple-tower suspension bridge under multi-support excitation. Meanwhile, the optimized parameters of semi-active control schemes using MR dampers have been obtained, providing relevant references in improving the seismic performance of three-tower suspension bridge.


2021 ◽  
Vol 33 (3) ◽  
pp. 225-249
Author(s):  
Mohammad Abdul Aziz ◽  
Saiied M. Aminossadati
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document