A Flat-Panel X-Ray Imaging Module for Medical Imaging and Nondestructive Testing

2006 ◽  
Vol 321-323 ◽  
pp. 1004-1007
Author(s):  
Hyo Sung Cho ◽  
Sung Il Choi ◽  
Bong Soo Lee ◽  
Sin Kim

In this study, we designed a flat-panel digital X-ray imaging module based upon the amorphous silicon (a-Si) technology and tested potential for medical imaging and nondestructive testing. The module employs a commercially available a-Si photosensor array of a 143 μm x 143 μm pixel size and a 42.9 cm x 42.9 cm active area, coupled with a CsI(Tl) scintillator of a 550 μm thickness, and a readout IC board which can be accessed through our home made GUI software. The experimental test was performed to evaluate the system response with exposure, modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE).

2006 ◽  
Vol 321-323 ◽  
pp. 1052-1055 ◽  
Author(s):  
Min Kook Cho ◽  
Ho Kyung Kim ◽  
Thorsten Graeve ◽  
Jung Min Kim

In order to develop a cost-effective digital X-ray imaging system, we considered a CMOS (complementary metal-oxide-semiconductor) photodiode array in conjunction with a scintillation screen. Imaging performance was evaluated in terms of MTF (modulation-transfer function), NPS (noise-power spectrum) and DQE (detective quantum efficiency). The presampled MTF was measured using a slanted-slit method. The NPS was determined by 2-dimensional Fourier analysis. Both the measured MTF and NPS, and a self-developed computational model for the X-ray spectral analysis were used to determine the spatial frequency-dependent DQE. From the measured MTF, the spatial resolution was found to be about 10.5 line pairs per millimeter (lp/mm). For a 45-kVp tungsten spectrum, the measured DQE around zero spatial frequency was about 40%.


2008 ◽  
Vol 22 (11) ◽  
pp. 1045-1050
Author(s):  
H. S. CHO ◽  
S. I. CHOI ◽  
K. Y. KIM ◽  
J. E. OH ◽  
S. Y. LEE ◽  
...  

As a continuation of our digital radiographic sensor R&D, we have developed a digital gamma imaging system based upon the cadmium-telluride ( CdTe ) photoconductor for the applications of industrial gamma imaging. The imaging system consists of a commercially-available CMOS pixel array of a 100 × 100 μ m 2 pixel size and a 5.4 % 151.0 mm 2 active area, coupled with a 750-μm-thick CdTe photoconductor, and a collimated selenium (75 Se ) radioisotope of an about 62.8 Ci activity and a physical size of 3.0 mm in diameter. In this study, we, for the first time, succeeded in obtaining useful gamma images of several test phantoms with the 75 Se radioisotope from the imaging system and evaluated its imaging performance in terms of the modulation transfer function (MTF), the noise power spectrum (NPS), and the detective quantum efficiency (DQE). For comparison, we also tested its X-ray imaging performance with a microfocus X-ray tube of an about 5 μm focal spot size at an operation condition of 90 kVp and 100 μA.


2021 ◽  
Author(s):  
Jesse Tanguay ◽  
Devon Richtsmeier ◽  
Christopher Dydula ◽  
James A. Day ◽  
Kris Iniewski ◽  
...  

2021 ◽  
Vol 16 (11) ◽  
pp. C11014
Author(s):  
K. Malinowski ◽  
M. Chernyshova ◽  
S. Jabłoński ◽  
I. Casiragi

Abstract The paper presents an optimization of a readout structure of the GEM-based detector designed for X-ray imaging for DTT tokamak in the energy range of 2–15 keV. The readout electrode of approximately 100 cm2 surface is composed of hexagonal pixels connected in a way that allows reducing the actual number of signal pixels (electronics channels). At the same time, based on time coincidence analysis, it makes possible to unambiguously identify the position of the recorded X-ray photon. For the input spectrum, the Detective Quantum Efficiency (DQE) of the detector was calculated using the Geant4 program and the spatial distributions of electron avalanches at the readout electrode were simulated using the Garfield++ program. These were conducted for a given energy range of radiation and a statistical distribution consistent with the shape of the spectrum considering the DQE of the detector. As a result, the size of a single hexagonal pixel was proposed to capture the position of the recorded radiation quanta in an optimal and effective way.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
A. Teymurazyan ◽  
G. Pang

A Monte Carlo simulation was used to study imaging and dosimetric characteristics of a novel design of megavoltage (MV) X-ray detectors for radiotherapy applications. The new design uses Cerenkov effect to convert X-ray energy absorbed in optical fibres into light for MV X-ray imaging. The proposed detector consists of a matrix of optical fibres aligned with the incident X rays and coupled to an active matrix flat-panel imager (AMFPI) for image readout. Properties, such as modulation transfer function, detection quantum efficiency (DQE), and energy response of the detector, were investigated. It has been shown that the proposed detector can have a zero-frequency DQE more than an order of magnitude higher than that of current electronic portal imaging device (EPID) systems and yet a spatial resolution comparable to that of video-based EPIDs. The proposed detector is also less sensitive to scattered X rays from patients than current EPIDs.


Sign in / Sign up

Export Citation Format

Share Document