gamma imaging
Recently Published Documents


TOTAL DOCUMENTS

262
(FIVE YEARS 42)

H-INDEX

25
(FIVE YEARS 4)

Atomic Energy ◽  
2022 ◽  
Author(s):  
O. P. Ivanov ◽  
V. N. Potapov ◽  
M. A. Samoilova ◽  
S. M. Ignatov

2021 ◽  
Vol 922 (2) ◽  
pp. 251
Author(s):  
V. A. Acciari ◽  
S. Ansoldi ◽  
L. A. Antonelli ◽  
A. Arbet Engels ◽  
M. Artero ◽  
...  

Abstract PSR J0218+4232 is one of the most energetic millisecond pulsars known and has long been considered as one of the best candidates for very high-energy (VHE; >100 GeV) γ-ray emission. Using 11.5 yr of Fermi Large Area Telescope (LAT) data between 100 MeV and 870 GeV, and ∼90 hr of Major Atmospheric Gamma Imaging Cherenkov (MAGIC) observations in the 20 GeV to 20 TeV range, we searched for the highest energy γ-ray emission from PSR J0218+4232. Based on the analysis of the LAT data, we find evidence for pulsed emission above 25 GeV, but see no evidence for emission above 100 GeV (VHE) with MAGIC. We present the results of searches for γ-ray emission, along with theoretical modeling, to interpret the lack of VHE emission. We conclude that, based on the experimental observations and theoretical modeling, it will remain extremely challenging to detect VHE emission from PSR J0218+4232 with the current generation of Imaging Atmospheric Cherenkov Telescopes, and maybe even with future ones, such as the Cherenkov Telescope Array.


2021 ◽  
Author(s):  
Sanjoy Mukhopadhyay ◽  
Richard Maurer ◽  
Mark Biery ◽  
Paul Guss

2021 ◽  
Vol 11 (12) ◽  
pp. 5606
Author(s):  
Vimal Kant Pandey ◽  
Cher Ming Tan ◽  
Vivek Sangwan

Prompt gamma imaging is one of the emerging techniques used in proton therapy for in-vivo range verification. Prompt gamma signals are generated during therapy due to the nuclear interaction between beam particles and nuclei of the tissue that is detected and processed in order to obtain the position and energy of the event so that the benefits of Bragg’s peak can be fully utilized. This work aims to develop a gallium nitride (GaN)-based readout system for position-sensitive detectors. An operational amplifier is the module most used in such a system to process the detector signal, and a GaN-based operational amplifier (OPA) is designed and simulated in LTSpice. The designed circuit had an open-loop gain of 70 dB and a unity gain frequency of 34 MHz. The slew rate of OPA was 20 V/μs and common mode rejection ratio was 84.2 dB. A simulation model of the readout circuit system using the GaN-based operational amplifier was also designed, and the result showed that the system can successfully process the prompt gamma signals. Due to the radiation hardness of GaN devices, the readout circuit system is expected to be more reliable than its silicon counterpart.


Author(s):  
Maxime Jacquet ◽  
Sara Marcatili ◽  
Marie-Laure Gallin-Martel ◽  
Jean-Luc Bouly ◽  
Yannick Boursier ◽  
...  

Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 35
Author(s):  
Lindita Hamolli ◽  
Mimoza Hafizi ◽  
Francesco De Paolis ◽  
Achille A. Nucita

THESEUS is an ESA space based project, which aims to explore the early universe by unveiling a complete census of Gamma-ray Burst (GRB) population in the first billion years. This goal is expected to be realized by the combined observations of its three instruments on board: the Soft X-ray Imager (SXI), the X and Gamma Imaging Spectrometer (XGIS), and the InfraRed Telescope (IRT). This last one will identify, localise, and study the afterglow of the GRBs detected by SXI and XGIS, and about 40% of its time will be devoted to an all-sky photometric survey, which will certainly detect a relevant number of extragalactic sources, including Quasars. In this paper, we focus on the capability of IRT-THESEUS Telescope to observe Quasars and, in particular, Quasars lensed by foreground galaxies. In our analysis we consider the recent results for the Quasar Luminosity Function (QLF) in the infrared band based on the Spitzer Space Telescope imaging survey. In order to estimate the number of lensed Quasars, we develop Monte Carlo simulations using the mass-luminosity distribution function of galaxies and the galaxy and Quasar redshift distributions. We predict about 2.14 × 105 Quasars to be observed during IRT-Theseus sky survey, and approximately 140 of them lensed by foreground galaxies. Detailed studies of these events would provide a powerful probe of the physical properties of Quasars and the mass distribution models of the galaxies.


Author(s):  
Sarah Bugby ◽  
John Lees ◽  
William McKnight ◽  
Numan Dawood

Sign in / Sign up

Export Citation Format

Share Document