Damage Localization Based on Power Spectral Density Analysis

2007 ◽  
Vol 347 ◽  
pp. 589-594 ◽  
Author(s):  
Sheng En Fang ◽  
Ricardo Perera ◽  
Maria Consuelo Huerta

An environmental excitation having random characteristics may be more effective and cost-efficient than other excitation means for non-destructive damage identification purpose on most of the large-scale engineering structures under operation. In general, many existing damage indexes are constructed based on the modal properties derived firstly from the power spectral density (PSD) analysis of the structures under random excitation. However, the derivation procedures for the modal parameters usually introduce some extra errors into the indexes. This paper aims to propose a simple and feasible damage location index (DLI) constructed directly derived from the analysis results of the structural response PSD. The performance of DLI was verified using an aluminum beam with fixed ends and an experimental reinforced concrete (RC) beam under free boundary condition. Our results show that the damage location of the aluminum beam can be determined via the plot of DLI value by selecting the peaks with the amplitudes exceeding a predefined threshold value in both single- and multi-damaged scenarios. And the index may also predict the possible damage zones in the RC beam experimentally tested.

2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Kehui Ma ◽  
Yongguo Zhang ◽  
Xü Zhen

The road input model is very important in the analysis of vehicle ride comfort and handling stability. Based on the analysis of the relationship between the spatial frequency power spectral density and the time power spectral density of the road, the road signal generation model is established. The simulation is carried out under different vehicle speeds, and the B and C-level random road time excitation signals are generated. The power spectral density is used to compare the simulation results of the model with the road classification standard. The experimental results show that the results are accurate and can provide reliable excitation signals for vehicle control research.


Sign in / Sign up

Export Citation Format

Share Document