rc beam
Recently Published Documents


TOTAL DOCUMENTS

758
(FIVE YEARS 248)

H-INDEX

32
(FIVE YEARS 6)

Structures ◽  
2022 ◽  
Vol 37 ◽  
pp. 69-81
Author(s):  
Hamed Dabiri ◽  
Khashayar Rahimzadeh ◽  
Ali Kheyroddin

Structures ◽  
2022 ◽  
Vol 36 ◽  
pp. 650-664
Author(s):  
Kai Qian ◽  
Dong-Fang Wang ◽  
Ting Huang ◽  
Yun-Hao Weng

2022 ◽  
pp. 136943322110737
Author(s):  
Nariman Fouad ◽  
Mohamed A Saifeldeen

This article proposes a new technique of monitoring neutral axis positions and deflection of Reinforced Concrete (RC) beam during corrosion of steel reinforcement using macro-strain measurements of distributed long-gauge sensors. A different group of distributed long-gauge Packaged Carbon Fiber Line (PCFL) sensors with self-compensation and effective packaging system is installed on the compression and tension fibers of the concrete surface and steel reinforcements of RC beam to verify the proposed method experimentally. An accelerated corrosion method utilizing a salt solution and the constant current was used to achieve the required corrosion levels. The estimated deflection measured by the developed method is compared with the results using Linear Variable Displacement Transducer (LVDTs). It has been demonstrated that long-gauge PCFL sensors could provide the same accuracy. The distributed measured strains were utilized to evaluate the deterioration of the structure’s health with the advance of corrosion. Based on corrosion monitoring experimental results, it can be confirmed that using distributed PCFL sensors mounted on steel reinforcements or concrete surface, the locations and progress of the damage with corrosion time can be detected effectively. The maximum error in the estimated deflection from PCFL sensors mounted on the concrete surface compared to the LVDTs before the onset and after 24 h of accelerated corrosion was 0.5% and 2.5%, respectively.


2022 ◽  
Vol 251 ◽  
pp. 113470
Author(s):  
Kai Qian ◽  
Song-Yuan Geng ◽  
Shi-Lin Liang ◽  
Feng Fu ◽  
Jun Yu

2022 ◽  
Vol 250 ◽  
pp. 113502
Author(s):  
M.I. Moharram ◽  
D.V. Bompa ◽  
B. Xu ◽  
A.Y. Elghazouli
Keyword(s):  
Rc Beam ◽  

Buildings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 27
Author(s):  
Nouman Khattak ◽  
Moustafa Mansour ◽  
Tamer El-Maaddawy ◽  
Najif Ismail

This paper aims to examine the nonlinear flexural behavior of continuous RC beam specimens strengthened with fabric-reinforced cementitious matrix (FRCM) composites through experimental testing and numerical modeling. A total of nine two-span RC beam specimens were constructed and tested. Test parameters included the type of FRCM (carbon (C-FRCM) and polyparaphenylene benzobisoxazole (PBO-FRCM), location of strengthening (sagging and hogging regions) and number of FRCM layers (two and four layers). Test results indicated that sagging strengthening resulted in a strength gain in the range of 17 to 29%, whereas hogging strengthening increased the load capacity by 9 to 17%. The use of C-FRCM resulted in a higher strength gain than that provided by PBO-FRCM composites. Specimens strengthened with PBO-FRCM exhibited, however, higher ductility and deformational capacity than those of their counterparts strengthened with C-FRCM. Doubling the number of FRCM layers resulted in no or insignificant increase in the load capacity but reduced the beam ductility. Specimens strengthened in the sagging regions exhibited moment redistribution ratios of 13 to 26% between the hogging and sagging regions. Insignificant moment redistribution was recorded for the specimens strengthened in the hogging region. Three-dimensional (3D) numerical simulation models, with and without an interfacial bond-slip law at the fabric–matrix interface, were developed. The inclusion of the bond-slip law in the modeling had an insignificant effect on predicted response. Although the models tended to underestimate the deflection, the predicted load capacities were within a 12% error band. Numerical findings were in agreement with those obtained from laboratory testing.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 12
Author(s):  
Hui Qian ◽  
Qingyuan Zhang ◽  
Xun Zhang ◽  
Enfeng Deng ◽  
Jundong Gao

In order to realize the self-centering, high energy consumption, and high ductility of the existing building structure through strengthening and retrofit of structure, a method of reinforced concrete (RC) beam strengthened by using Shape Memory Alloy (SMA) and Engineered Cementitious Composites (ECC) was proposed. Four kinds of specimens were designed, including one beam strengthened with enlarging section area of steel reinforced concrete, one beam strengthened with enlarging section area of SMA reinforced concrete, beam strengthened with enlarging section area of SMA reinforced ECC, and beam strengthened with enlarging section area of steel reinforced ECC; these specimens were manufactured for the monotonic cycle loading tests study on its bending behavior. The influence on the bearing capacity, energy dissipation performance, and self-recovery capacity for each test specimens with different strengthening materials were investigated, especially the bending behavior of the beams strengthened by SMA reinforced ECC. The results show that, compared with the ordinary reinforced concrete beams, strengthening existing RC beam with enlarging section area of SMA reinforced ECC can improve the self-recovery capacity, ductility, and deformability of the specimens. Finally, a revised design formula for the bending capacity of RC beams, strengthened with enlarging sections of ECC, was proposed by considering the tensile capacity provided by ECC, and the calculated values are in good agreement with the experimental value, indicating that the revised formula can be well applied to the beam strengthening with enlarging section of SMA-ECC Materials.


Sign in / Sign up

Export Citation Format

Share Document