An Intelligent Optimization Approach of Feedrate Scheduling Based on Hybrid Simulation Models

2008 ◽  
Vol 392-394 ◽  
pp. 211-215
Author(s):  
Li Qiang Zhang ◽  
Yu Han Wang ◽  
Ming Chen

In free-form surface machining, it is essential to optimize the feedrate in order to improve the machining efficiency. Conservative constant feedrate values have been mostly used since there was a lack of physical models and optimization tools for the machining processes. The overall goal of this research is the integration of geometric and mechanistic milling models for force prediction and feedrate scheduling for free-form surface machining. For each tool move a geometric model calculates the cutting geometry parameters, then a mechanistic model uses this information with the constraint force to calculate desired feedrates. The feedrate is written into the part program. When the integrated modeling approach was used, it was shown that the machining time can be decreased significantly along the tool path. Production time in machining propeller example was reduced to 35% compared to constant feedrate cases.

2010 ◽  
Vol 4 (3) ◽  
pp. 273-283 ◽  
Author(s):  
Yaman Boz ◽  
◽  
Onur Demir ◽  
Ismail Lazoglu

Free-form surfaces are commonly used in the automotive, aerospace, biomedical, home appliance, and die/mold industries. Minimizing cycle times is crucial for free-form surface machining in today’s competitive market. Although there have been remarkable enhancements in the CAD/CAM industry, these enhancements lack physical insight into machining processes. This article presents a model-based feedrate scheduling strategy for 3-axis machining of free-form surfaces. In feedrate scheduling strategy, cycle time is minimized by off-line control of cutting forces under a threshold value between specified feedrate values. Using tool deflection analysis, surface form error can also be predicted. The proposed approaches are tested under various machining conditions and the results are presented in the paper.


Author(s):  
Tomonobu Suzuki ◽  
Koichi Morishige

Abstract This study aimed to improve the efficiency of free-form surface machining by using a five-axis controlled machine tool and a barrel tool. The barrel tool has cutting edges, with curvature smaller than the radius, increasing the pick feed width compared with a conventional ball end mill of the same tool radius. As a result, the machining efficiency can be improved; however, the cost of the barrel tool is high and difficult to reground. In this study, a method to obtain the cutting points that make the cusp height below the target value is proposed. Moreover, a method to improve the tool life by continuously and uniformly changing the contact point on the cutting edge is proposed. The usefulness of the developed method is confirmed through machining simulations.


Author(s):  
Feiyan Han ◽  
Juan Wei ◽  
Bin Feng ◽  
Wu Zhang

The manufacturing technology of an integral impeller is an important indicator for measuring the manufacturing capability of a country. Its manufacturing process involves complex free-form surface machining, a time consuming and error-prone process, and the tool path planning is considered as a critical issue of free-form surface machining but still lacks a systematic solution. In this paper, aiming at the tool path planning of the impeller channel, a quasi-triangular tool path planning method based on parametric domain template trajectory mapping is proposed. The main idea is to map the template trajectory to physical domain by using the mapping model of parametric domain to the physical domain to obtain the actual machining path. Firstly, the trajectory mapping model of parametric domain to physical domain is established using the morphing technique, and the template trajectory mapping method in the parametric domain is given. Secondly, the clean-up boundary of the impeller channel is determined in the parametric domain, and the quasi-triangular template trajectory of the impeller channel is defined. Finally, taking a certain type of impeller as an example, the quasi-triangular tool path of the impeller channel is calculated, and the tool path calculation time of this method is compared with that of the traditional isometric offset method. The result shows that the computational efficiency is improved by 45% with this method, which provides a new method for the rapid acquisition of NC machining tool path for impeller channels. In addition, the simulation and actual machining are carried out, the results show that the shape of actual cutting traces on the surface of the impeller channel is quasi-triangular, showing that this method is effective and feasible.


Mechanik ◽  
2018 ◽  
Vol 91 (12) ◽  
pp. 1100-1103
Author(s):  
Andrzej Werner

This article presents a method of increasing the accuracy of the production of free-form surfaces. This method is based on the execution of coordinate measurements of the pre-treated object and reconstruction of its nominal geometric model in order to compensate existing machining errors.


2011 ◽  
Vol 215 ◽  
pp. 176-181
Author(s):  
Li Min ◽  
Ke Hua Zhang

A new tool path generation method based on cutter shaft tilt method was proposed for free-form surface machining by using Ball-end Cutter. Firstly, it introduces the processing quality problems caused by traditional ball-end mill processing. Then cutter shaft tilt was proposed to avoid the above questions. Analyzing the different machining efficiency at the different angle, and then cutter shaft tilt compensation method which based on above method could avoid that problem was proposed. After the paths calculation to a real surface and simulation, the result shows that, comparing to traditional machining method, the new method reduced efficiently phenomenon of extruding and scratching surface. It meets five-axis processing accuracy requirements.


CIRP Annals ◽  
2009 ◽  
Vol 58 (1) ◽  
pp. 101-104 ◽  
Author(s):  
I. Lazoglu ◽  
C. Manav ◽  
Y. Murtezaoglu

2010 ◽  
Vol 29-32 ◽  
pp. 424-429
Author(s):  
Li Qiang Zhang ◽  
Ye Cui Yan

In free-form surface machining, it is essential to optimize the feedrate in order to improve the machining efficiency. This work is the first of a two part paper on cutting force prediction and feedrate optimization for five-axis milling. Conservative cutting parameters have been mostly used since there was a lack of physical models and optimization tools. Part and tool deflections under high cutting forces may result in poor part quality. The extracted cutter workpiece engagements are used as input to a force prediction model. The predicted cutting forces are shown to be in reasonable agreement with those collection during a roughing operation on a dual blades part.


Sign in / Sign up

Export Citation Format

Share Document