Model Based Feedrate Scheduling for Free-Form Surface Machining

2010 ◽  
Vol 4 (3) ◽  
pp. 273-283 ◽  
Author(s):  
Yaman Boz ◽  
◽  
Onur Demir ◽  
Ismail Lazoglu

Free-form surfaces are commonly used in the automotive, aerospace, biomedical, home appliance, and die/mold industries. Minimizing cycle times is crucial for free-form surface machining in today’s competitive market. Although there have been remarkable enhancements in the CAD/CAM industry, these enhancements lack physical insight into machining processes. This article presents a model-based feedrate scheduling strategy for 3-axis machining of free-form surfaces. In feedrate scheduling strategy, cycle time is minimized by off-line control of cutting forces under a threshold value between specified feedrate values. Using tool deflection analysis, surface form error can also be predicted. The proposed approaches are tested under various machining conditions and the results are presented in the paper.

2008 ◽  
Vol 392-394 ◽  
pp. 211-215
Author(s):  
Li Qiang Zhang ◽  
Yu Han Wang ◽  
Ming Chen

In free-form surface machining, it is essential to optimize the feedrate in order to improve the machining efficiency. Conservative constant feedrate values have been mostly used since there was a lack of physical models and optimization tools for the machining processes. The overall goal of this research is the integration of geometric and mechanistic milling models for force prediction and feedrate scheduling for free-form surface machining. For each tool move a geometric model calculates the cutting geometry parameters, then a mechanistic model uses this information with the constraint force to calculate desired feedrates. The feedrate is written into the part program. When the integrated modeling approach was used, it was shown that the machining time can be decreased significantly along the tool path. Production time in machining propeller example was reduced to 35% compared to constant feedrate cases.


Mechanik ◽  
2018 ◽  
Vol 91 (12) ◽  
pp. 1100-1103
Author(s):  
Andrzej Werner

This article presents a method of increasing the accuracy of the production of free-form surfaces. This method is based on the execution of coordinate measurements of the pre-treated object and reconstruction of its nominal geometric model in order to compensate existing machining errors.


2003 ◽  
Vol 125 (3) ◽  
pp. 397-404 ◽  
Author(s):  
Rixin Zhu ◽  
Richard E. DeVor ◽  
Shiv G. Kapoor

In this paper, a process model-based approach has been proposed for monitoring and fault diagnosis in the multi-axis ball end milling process. Besides its ability to deal with complex cutting geometry in free-form surface machining, the method has the capability of not only detecting the presence but also estimating the magnitudes of faults, which include flute chipping, breakage and spindle/cutter axes runout. A threshold-based fault detection method is developed based on the analysis of harmonic power distribution in the cutting force signal. A genetic algorithm approach is used to search and determine the fault pattern and magnitudes. The new approach is validated through both constant cross-section cut and free-form surface machining tests on 1018 steel.


Author(s):  
Jean-Max Redonnet ◽  
Alejandro Gamboa Vázquez ◽  
Alberto Traslosheros Michel ◽  
Stéphane Segonds

Machining by parallel planes is a widely used strategy for end-milling of free-form surfaces on 3-axis numerically controlled machines. In industry, this type of machining is generally performed with a hemispherical tool. However, numerous studies have shown the benefits of torus-end mills over ball-end or flat-end mills. More than anything, the machining direction has much influence on productivity while using a torus-end mill. In this context, the choice of the machining direction is of paramount importance when using a torus-end mill in the machining of free-form surfaces. This paper presents an optimization of part machining direction allowing the machining time to be minimized while respecting the maximum imposed scallop height. This optimization methodology is then applied to an industrial part and measurements are performed on this part. The study highlights the interest of optimizing the machining direction and the benefits that can be drawn with respect to machining using a non-optimized direction.


2011 ◽  
Vol 21 (06) ◽  
pp. 609-634 ◽  
Author(s):  
DANNY Z. CHEN ◽  
EWA MISIOŁEK

We present a theoretical study of a problem related to optimal free-form surface partitioning, which arises in surface machining in manufacturing. In particular, we consider partitioning a free-form surface in 3-D into two subsurfaces subject to a global objective function. As a key subroutine, we develop new algorithms for the geometric problem of processing an off-line sequence of insertions and deletions of convex polygons alternated with point membership/proximity queries on the common intersection of the polygons. We show how this subroutine can be used to solve surface 2-partitioning. Our algorithm for the 2-partitioning problem takes [Formula: see text] time, where m is the number of polygons of size O(n) each. This improves the asymptotic time complexity of the previous best-known O(m2n2)-time algorithm. Our algorithms may be applicable to other accessibility and partition problems involving free-form surfaces in computer graphics and manufacturing. From the computational geometry point of view, our method combines nontrivial data structures, geometric observations, and algorithmic techniques that may be used to solve other geometric problems. For example, our algorithm can process O(n) insertions and deletions of convex polygons (of size O(n) each) and queries on their intersections in O(n2 log log n) time, improving the "standard" O(n2 log n) time solution.


Author(s):  
Tomonobu Suzuki ◽  
Koichi Morishige

Abstract This study aimed to improve the efficiency of free-form surface machining by using a five-axis controlled machine tool and a barrel tool. The barrel tool has cutting edges, with curvature smaller than the radius, increasing the pick feed width compared with a conventional ball end mill of the same tool radius. As a result, the machining efficiency can be improved; however, the cost of the barrel tool is high and difficult to reground. In this study, a method to obtain the cutting points that make the cusp height below the target value is proposed. Moreover, a method to improve the tool life by continuously and uniformly changing the contact point on the cutting edge is proposed. The usefulness of the developed method is confirmed through machining simulations.


Author(s):  
Yuan-Shin Lee ◽  
Tien-Chien Chang

Abstract In this paper, a methodology of applying convex hull property in solving the tool interference problem is presented for 5-axis NC machining of free-form surfaces. Instead of exhausted point-by-point checking for possible tool interference, a quick checking can be done by using the convex hull constructed from the control polygon of free-form surface modeling. Global tool interference in 5-axis NC machining is detected using the convex hull of the free-form surface. A correction method for removing tool interference has also been developed to generate correct tool path for 5-axis NC machining. The inter-surface tool interference can be avoided by using the developed technique.


2011 ◽  
Vol 287-290 ◽  
pp. 2805-2809
Author(s):  
Ming Yu Huang ◽  
Xiu Juan Wu ◽  
Zhong Shi Jia ◽  
Hong Jun Ni ◽  
Jing Jing Lv ◽  
...  

Data acquisition and model reconstruction of free-form surfaces with holes were been studied, based on coordinate measuring machines. First, the structural process of the parts was analyzed, the method of combinate contact measurement with non-contact measurement were used to get point cloud; Then the point cloud were been preprocessed, feature curve extracted and solid modeled; Finally, the restructure model was been quality assessed and accuracy assessed. Using the measurement of combinated contact and non-contact can also meet both the precision requirement of key part and the fast reconstruction requirement of non-critical part, which has great significance on that part to fast and accurate reconstruction.


Sign in / Sign up

Export Citation Format

Share Document