Elastic-Plastic Finite Element Analysis of the Effect of the Compressive Loading on Fatigue Crack Tip Parameters

2008 ◽  
Vol 392-394 ◽  
pp. 980-984 ◽  
Author(s):  
Y. Sha ◽  
Hui Tang ◽  
Jia Zhen Zhang

In this paper, a detailed elastic-plastic finite element analysis of the effect of the compressive loading on crack tip plasticity is studied based on the material’s kinematic hardening model. Five centre-cracked panel specimens with different crack lengths are analyzed. The analysis shows that in a tension-compression loading the maximum spread of the crack tip reverse plastic zone increases with the increase of the compressive stress and the near crack tip opening displacement decreases with the increase of the compressive stress at the same nominal stress intensity factor. The applied compressive stress is the main factor controlling the near crack tip parameters.

2006 ◽  
Vol 324-325 ◽  
pp. 295-298 ◽  
Author(s):  
Hyeon Chang Choi

An elastic-plastic finite element analysis (FEA) is performed to examine the opening behavior of fatigue crack, where the contact elements are used in the mesh of the crack tip area. The relationship between fatigue crack opening behavior and cyclic crack tip opening displacement was studied in the previous study. In this paper, we investigate the effect of the element size when predict fatigue crack opening behavior using the cyclic crack tip opening displacement obtained from FEA. The cyclic crack tip opening displacement is well related to fatigue crack opening behavior.


2009 ◽  
Vol 16-19 ◽  
pp. 269-272 ◽  
Author(s):  
Yu Sha ◽  
Hui Tang ◽  
Xin Song ◽  
Jia Zhen Zhang

In this paper, elastic-plastic finite element analysis has been performed in order to obtain the fatigue crack tip parameters under tension-compression loading. Two centre-cracked high-strength aluminum alloy with a crack length of 2mm under different tension-compression loading are analyzed. The analysis shows that the compressive loading has a significant contribution towards the crack tip plasticity and the crack tip stress. In a tension-compression loading the crack tip displacement increases with the increase of the compressive stress and the crack tip compress stress increases with the increase of the compressive stress. The maximum stress intensity Kmax in the tension part of the stress cycle and the maximum compressive stress in the compression part of the stress cycle are the main factors controlling the near crack tip parameters.


2006 ◽  
Vol 324-325 ◽  
pp. 73-76
Author(s):  
J.Z. Zhang ◽  
Xiao Dong He ◽  
X. Song ◽  
Shan Yi Du

An elastic-plastic finite element analysis of the effect of the compressive loading on crack tip plasticity is presented. Two center-cracked panel specimens with different crack lengths are analysed under tension-compression loading. The size and shape of the crack tip reverse plastic zone, the crack opening profiles of the crack tip for short (0.1 mm) and long crack (2 mm) have been studied. The analysis shows that the compressive loading has a significant contribution towards the crack tip plasticity.


Author(s):  
Dong Hyun Moon ◽  
Jeong Soo Lee ◽  
Jae Myung Lee ◽  
Myung Hyun Kim

Elastic plastic fracture mechanics (EPFM) is the domain of fracture analysis which considers extensive plastic deformation at crack tip prior to fracture. J integral and crack tip opening displacement (CTOD) have been commonly used as parameters for EPFM analysis. The relationship between these parameters has been extensively studied by industry and academia. The plastic constraint factor can serve as a parameter to characterize constraint effects in fracture involving plastic deformation. Therefore, the characteristics of plastic constraint factor are important in EPFM analysis. In this study, the relationship between J Integral and CTOD was investigated by conducting fracture toughness tests using single edge notched bend (SENB) specimens. Also, plastic constraint factor was investigated by using finite element analysis. Numerical analysis was carried out using ABAQUS elastic-plastic analysis mode.


1983 ◽  
Vol 18 (1) ◽  
pp. 69-75 ◽  
Author(s):  
A P Kfouri

Results from an elastic-plastic finite element analysis of a compact tension specimen (CTS) are presented and provide information on the growth of crack tip plastic zones, crack tip opening displacements, stresses and strains in the region of the crack tip, and Rice's J integral. The elastic-plastic crack separation energy rate GΔ is also evaluated when the crack extends at various loads by applying a crack tip node release technique.


Sign in / Sign up

Export Citation Format

Share Document