Research on Multi-Axis High Speed Machining Milling Force of Aeroengine Impeller

2010 ◽  
Vol 455 ◽  
pp. 87-91
Author(s):  
Y.Y. Guo ◽  
Can Zhao ◽  
Wei Gang Du

On the basis of the ball-end milling feature during high-speed machining impeller, the relationship between cutting force and chips is analyzed in this paper. The model of ball-end milling cutter cutting force is founded through differential method. And the coefficients solution of cutting force model is expounded. Besides, the coefficients solution and the cutting force model simulation are implemented by the software Matlab.

2011 ◽  
Vol 291-294 ◽  
pp. 2965-2969
Author(s):  
Yu Jun Cai ◽  
Hua Shen ◽  
Tie Li Qi

A new cutting force model of ball-end mill with double effect is developed through analysing the machining process by using differential geometry. The cutting force model is needed to be revised for the component force in Z direction because of the offset to the actual results. The cutting force and the ball-end milling force coefficients can be given with numerical method. A feedrate optimization strategy is also proposed based on the developed cutting force model and tested effectively.


1999 ◽  
Author(s):  
Hsi-Yung (Steve) Feng ◽  
Ning Su

Abstract The prediction and optimization of cutting forces in the finishing machining of 3D plane surfaces using ball-end milling are presented in this paper. The cutting force model is developed based on the mechanistic modeling approach. This improved model is able to accurately predict the cutting forces for non-horizontal and cross-feed cutter movements typical in 3D finishing ball-end milling. Optimization of the cutting forces is used to determine both the tool path and the maximum feed rate in 3D plane surface finishing machining. The objective is to achieve highest machining efficiency and to ensure product quality. Experimental results have shown that the cutting force model gives excellent predictions of cutting forces in 3D finishing ball-end milling. The feasibility of the integrated process planning method has been demonstrated through the establishment of optimized process plans for the finishing machining of 3D plane surfaces.


2005 ◽  
Vol 127 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Jeong Hoon Ko ◽  
Dong-Woo Cho

Application of a ball-end milling process model to a CAD/CAM or CAPP system requires a generalized methodology to determine the cutting force coefficients for different cutting conditions. In this paper, we propose a mechanistic cutting force model for 3D ball-end milling using instantaneous cutting force coefficients that are independent of the cutting conditions. The uncut chip thickness model for three-dimensional machining considers cutter deflection and runout. An in-depth analysis of the characteristics of these cutting force coefficients, which can be determined from only a few test cuts, is provided. For more accurate cutting force predictions, the size effect is also modeled using the cutter edge length of the ball-end mill and is incorporated into the cutting force model. This method of estimating the 3D ball-end milling force coefficients has been tested experimentally for various cutting conditions.


2000 ◽  
Vol 123 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Hsi-Yung Feng ◽  
Ning Su

This paper presents an improved mechanistic cutting force model for the ball-end milling process. The objective is to accurately model the cutting forces for nonhorizontal and cross-feed cutter movements in 3D finishing ball-end milling. Main features of the model include: (1) a robust cut geometry identification method to establish the complicated engaged area on the cutter; (2) a generalized algorithm to determine the undeformed chip thickness for each engaged cutting edge element; and (3) a comprehensive empirical chip-force relationship to characterize nonhorizontal cutting mechanics. Experimental results have shown that the present model gives excellent predictions of cutting forces in 3D ball-end milling.


2006 ◽  
Vol 315-316 ◽  
pp. 25-29 ◽  
Author(s):  
Bin Jiang ◽  
Min Li Zheng ◽  
Shu Cai Yang ◽  
M. Fu

Based on the experiment of high speed milling ball-end milling forces, the model of ball-end milling force is established for high speed machining complex surface by differential method, and research on the principle of high speed ball-end milling force. Results show that the parameters of cutting layer are subjected to varying curvature of complex surface, and place in the unstable state, cutting force decreases as the curvature and the inclination angle increase. By means of lessening cutting speed’s grads and adjusting the inclination angle and the path interval of cutter to the variety of curvature, cutting force and its fluctuation can be depressed availably; the process of high speed ball-end milling can be obviously improved.


2011 ◽  
Vol 314-316 ◽  
pp. 389-392
Author(s):  
Hong Liang Zhou ◽  
Wei Xiao Tang ◽  
Qing Hua Song ◽  
Hua Wei Ju

High-speed milling (HSM) has advantages in high productivity high precision and low production cost. Thus it can be widely used in the manufacture industry. However, when the speed of spindle-tool reaches a higher speed range, the gyroscopic effect will become an important part of its stable milling. In this paper, a dynamics model of HSM system was proposed considering the influence of gyroscopic moment due to high rotating speed of end milling. Finite element model (FEM) is used to model the dynamics of a spindle-milling system. It obtains the trajectory of central point in face milling with considering gyroscopic effects through the dynamics model at high speeds. Then the cutting force model will be corrected by the trajectory of face milling. So it can provide a basis for stability prediction of high speed milling.


Sign in / Sign up

Export Citation Format

Share Document