The Application of Genetic Algorithm on Optimization Problem for Mayonnaise Compositions

2011 ◽  
Vol 480-481 ◽  
pp. 219-224
Author(s):  
Zhi Yang Luo ◽  
Hong Xia Zhao ◽  
Xin Yuan ◽  
Yuan Li

For some function optimization problems of non-linear, multi-model and multi-objective, they are difficult to solve by other optimization methods, however, genetic algorithm is easy to find good results, so a kind of optimization problem for mayonnaise compositions based on genetic algorithm is introduced. This termination condition is selected according to the iteration number of maximum generation, the optimal solution of last generation in the evolution is the final result with genetic algorithm to solve optimization problem. The population size is 20, crossover rate is 0.7, and mutation rate is 0.04. Via the evolution of 100 generations, the optimization solution is gotten, which has certain guiding significance for the production.

2017 ◽  
Vol 1 (2) ◽  
pp. 82 ◽  
Author(s):  
Tirana Noor Fatyanosa ◽  
Andreas Nugroho Sihananto ◽  
Gusti Ahmad Fanshuri Alfarisy ◽  
M Shochibul Burhan ◽  
Wayan Firdaus Mahmudy

The optimization problems on real-world usually have non-linear characteristics. Solving non-linear problems is time-consuming, thus heuristic approaches usually are being used to speed up the solution’s searching. Among of the heuristic-based algorithms, Genetic Algorithm (GA) and Simulated Annealing (SA) are two among most popular. The GA is powerful to get a nearly optimal solution on the broad searching area while SA is useful to looking for a solution in the narrow searching area. This study is comparing performance between GA, SA, and three types of Hybrid GA-SA to solve some non-linear optimization cases. The study shows that Hybrid GA-SA can enhance GA and SA to provide a better result


Author(s):  
Yulong Tian ◽  
Tao Gao ◽  
Weifang Zhai ◽  
Yaying Hu ◽  
Xinfeng Li

In this paper, a genetic algorithm with sexual reproduction and niche selection technology is proposed. Simple genetic algorithm has been successfully applied to many evolutionary optimization problems. But there is a problem of premature convergence for complex multimodal functions. To solve it, the frame and realization of niche genetic algorithm based on sexual reproduction are presented. Age and sexual structures are given to the individuals referring the sexual reproduction and “niche” phenomena, importing the niche selection technology. During age and sexual operators, different evolutionary parameters are given to the individuals with different age and sexual structures. As a result, this genetic algorithm can combat premature convergence and keep the diversity of population. The testing for Rastrigin function and Shubert function proves that the niche genetic algorithm based on sexual reproduction is effective.


Author(s):  
Rizki Agung Pambudi ◽  
Wahyuni Lubis ◽  
Firhad Rinaldi Saputra ◽  
Hanif Prasetyo Maulidina ◽  
Vivi Nur Wijayaningrum

The teaching distribution for lecturers based on their expertise is very important in the teaching and learning process. Lecturers who teach a course that is in accordance with their interests and abilities will make it easier for them to deliver material in class. In addition, students will also be easier to accept the material presented. However, in reality, the teaching distribution is often not in accordance with the expertise of the lecturer so that the lecturers are not optimal in providing material to their students. This problem can be solved using optimization methods such as the genetic algorithm. This study offers a solution for teaching distribution that focuses on the interest of each lecturer by considering the order of priorities. The optimal parameters of the test results are crossover rate (cr) = 0.6, mutation rate (mr) = 0.4, number of generations = 40, and population size = 15. Genetic algorithm is proven to be able to produce teaching distribution solutions with a relatively high fitness value at 4903.3.


Author(s):  
Amir Mohsen Hejazi ◽  
Mohammad Pourgol Mohammad

Layout determination of connectors in different mechanical configurations improves the design characteristics. The issue has recently become more practical in sensitive industries, especially in montage processes. Since connections are under different loads like bending, the layout of connection should be considered as an effective design factor in different loading conditions which is itself a step forward in achieving the optimized connection and also increases the connection life. This paper analyses the layout effects in a multiple pinned joint under bending in a limited area. The goal is to minimize the average stress and having a uniform stress distribution in the connections in order to prevent the failure inducing effect of stress concentration. The common method for solving these optimization problems is to couple two finite element numerical stress analysis software with an optimization tool or independent software which is a highly time consuming method due to enormous volume of the calculations in each iteration. In this paper the optimization problem is mathematically modeled and solved using Genetic Algorithm (GA). Genetic algorithm is found applicable here due to nonlinear behavior and complexity of the objective function in the optimization problem where analytical optimization methods are not useful. The validation results of stress analysis are obtained using finite element software. The optimized connections have longer lifetime and can carry higher loads because of degraded effects of stress concentration and minimized stresses.


Author(s):  
Nataliya Gulayeva ◽  
Volodymyr Shylo ◽  
Mykola Glybovets

Introduction. As early as 1744, the great Leonhard Euler noted that nothing at all took place in the universe in which some rule of maximum or minimum did not appear [12]. Great many today’s scientific and engineering problems faced by humankind are of optimization nature. There exist many different methods developed to solve optimization problems, the number of these methods is estimated to be in the hundreds and continues to grow. A number of approaches to classify optimization methods based on various criteria (e.g. the type of optimization strategy or the type of solution obtained) are proposed, narrower classifications of methods solving specific types of optimization problems (e.g. combinatorial optimization problems or nonlinear programming problems) are also in use. Total number of known optimization method classes amounts to several hundreds. At the same time, methods falling into classes far from each other may often have many common properties and can be reduced to each other by rethinking certain characteristics. In view of the above, the pressing task of the modern science is to develop a general approach to classify optimization methods based on the disclosure of the involved search strategy basic principles, and to systematize existing optimization methods. The purpose is to show that genetic algorithms, usually classified as metaheuristic, population-based, simulation, etc., are inherently the stochastic numerical methods of direct search. Results. Alternative statements of optimization problem are given. An overview of existing classifications of optimization problems and basic methods to solve them is provided. The heart of optimization method classification into symbolic (analytical) and numerical ones is described. It is shown that a genetic algorithm scheme can be represented as a scheme of numerical method of direct search. A method to reduce a given optimization problem to a problem solvable by a genetic algorithm is described, and the class of problems that can be solved by genetic algorithms is outlined. Conclusions. Taking into account the existence of a great number of methods solving optimization problems and approaches to classify them it is necessary to work out a unified approach for optimization method classification and systematization. Reducing the class of genetic algorithms to numerical methods of direct search is the first step in this direction. Keywords: mathematical programming problem, unconstrained optimization problem, constrained optimization problem, multimodal optimization problem, numerical methods, genetic algorithms, metaheuristic algorithms.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Huaixiao Wang ◽  
Jianyong Liu ◽  
Jun Zhi ◽  
Chengqun Fu

To accelerate the evolutionary process and increase the probability to find the optimal solution, the following methods are proposed to improve the conventional quantum genetic algorithm: an improved method to determine the rotating angle, the self-adaptive rotating angle strategy, adding the quantum mutation operation and quantum disaster operation. The efficiency and accuracy to search the optimal solution of the algorithm are greatly improved. Simulation test shows that the improved quantum genetic algorithm is more effective than the conventional quantum genetic algorithm to solve some optimization problems.


2019 ◽  
Vol 8 (1) ◽  
pp. 17-21
Author(s):  
Nika Topuria ◽  
Omar Kikvidze

Use of non-deterministic algorithms for solving multi-variable optimization problems is widely used nowadays. Genetic Algorithm belongs to a group of stochastic biomimicry algorithms, it allows us to achieve optimal or near-optimal results in large optimization problems in exceptionally short time (compared to standard optimization methods). Major advantage of Genetic Algorithm is the ability to fuse genes, to mutate and do selection based on fitness parameter. These methods protect us from being trapped in local optima (Most of deterministic algorithms are prone to getting stuck on local optima). In this paper we experimentally show the upper hand of Genetic Algorithms compared to other traditional optimization methods by solving complex optimization problem.


2014 ◽  
Vol 41 (1) ◽  
pp. 55-59
Author(s):  
Safaa Omran ◽  
Ali Al_Khalid ◽  
Israa Ali

With the growth of networked system and applications such as eCommerce, the demand for effective internetsecurity is increasing. Cryptology is the science and study of systems for secret communication. It consists of twocomplementary fields of study: cryptography and cryptanalysis.The genetic algorithm is one of the search methods, whichfinds the optimal solution. It is one of the methods, which is used to decrypt cipher.This work focuses on using GeneticAlgorithms to cryptanalyse knapsack cipher. The knapsack cipher is with a knapsack sequence of size 16 to encrypt twocharacters together. Different values of parameters have been used: Population size, mutation rate, number of generation.


Author(s):  
Yulong Tian ◽  
Tao Gao ◽  
Weifang Zhai ◽  
Yaying Hu ◽  
Xinfeng Li

In this paper, a genetic algorithm with sexual reproduction and niche selection technology is proposed. Simple genetic algorithm has been successfully applied to many evolutionary optimization problems. But there is a problem of premature convergence for complex multimodal functions. To solve it, the frame and realization of niche genetic algorithm based on sexual reproduction are presented. Age and sexual structures are given to the individuals referring the sexual reproduction and “niche” phenomena, importing the niche selection technology. During age and sexual operators, different evolutionary parameters are given to the individuals with different age and sexual structures. As a result, this genetic algorithm can combat premature convergence and keep the diversity of population. The testing for Rastrigin function and Shubert function proves that the niche genetic algorithm based on sexual reproduction is effective.


2009 ◽  
Vol 26 (04) ◽  
pp. 479-502 ◽  
Author(s):  
BIN LIU ◽  
TEQI DUAN ◽  
YONGMING LI

In this paper, a novel genetic algorithm — dynamic ring-like agent genetic algorithm (RAGA) is proposed for solving global numerical optimization problem. The RAGA combines the ring-like agent structure and dynamic neighboring genetic operators together to get better optimization capability. An agent in ring-like agent structure represents a candidate solution to the optimization problem. Any agent interacts with neighboring agents to evolve. With dynamic neighboring genetic operators, they compete and cooperate with their neighbors, and they can also use knowledge to increase energies. Global numerical optimization problems are the most important ones to verify the performance of evolutionary algorithm, especially of genetic algorithm and are mostly of interest to the corresponding researchers. In the corresponding experiments, several complex benchmark functions were used for optimization, several popular GAs were used for comparison. In order to better compare two agents GAs (MAGA: multi-agent genetic algorithm and RAGA), the several dimensional experiments (from low dimension to high dimension) were done. These experimental results show that RAGA not only is suitable for optimization problems, but also has more precise and more stable optimization results.


Sign in / Sign up

Export Citation Format

Share Document