Fabrication of ZnO Nanospheres and Application to Dye-Sensitized Solar Cells

2012 ◽  
Vol 512-515 ◽  
pp. 1545-1548
Author(s):  
Yan Xiang Wang ◽  
Bing Xin Zhao ◽  
Jian Sun

In this paper, pure ZnO nanospheres and IO3- ions doped ZnO nanospheres were prepared by heating under reflux with zinc acetate and diethylene glycol as raw materials, and the ZnO dye-sensitized solar cells (DSCs) were prepared. The influences of reaction time and IO3--ions dope on ZnO properties were studied. DSCs properties prepared with obtained ZnO nanospheres were investied. ZnO nanospheres were characterized by XRD, SEM and infrared absorption spectrogram. The results showed that when the temperature was 160°C, ZnO nanospheres with diameter 100-800nm were obtained. When reaction time was 2h, ZnO diameter was about 500nm. When the reaction time was 24h, the diameter of ZnO was about 800nm with wider distribution. The ZnO DSCs were prepared by using ZnO nanopowders with different reaction time as photoanode. The photoelectric conversion efficiency of 24h-ZnO DSCs was the highest. The photoelectric conversion efficiency, open circuit voltage, short-circuit current and fill factor were 2.15%, 0.64V, 6.47 mA•cm-2, 0.52, respectively.

2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Yanzhen Yang ◽  
Renjie Sun ◽  
Chengwu Shi ◽  
Yucheng Wu ◽  
Mei Xia

N-(2-hydroxyethyl)ethylenediaminium iodides (HEEDAIs) and N-(2-hydroxyethyl)piperazinium iodides (HEPIs) were synthesized, and their thermal properties were analysed. The influence of HEEDAI and HEPI onI3-/I-redox behavior in binary ionic liquid was investigated. The result revealed that HEEDAI can suppress the recombination betweenI3-and the injected electrons in TiO2conduction band and be used as the alternative of 4-tert-butylpyridine in the electrolyte of dye-sensitized solar cells. The electrolyte C, 0.15 mol⋅L−1I2, HEEDAI and MPII with mass ratio of 1 : 4, gave the short-circuit photocurrent density of 9.36 mA⋅cm−2, open-circuit photovoltage of 0.67 V, fill factor of 0.52, and the corresponding photoelectric conversion efficiency of 3.24% at the illumination (air mass 1.5, 100 mW⋅cm−2, active area 0.25 cm2).


2014 ◽  
Vol 602-603 ◽  
pp. 884-887
Author(s):  
Hui Xia Cao ◽  
Ze Zhou ◽  
Xiao Di Li ◽  
Bo Yu Wang ◽  
Yu Lin Zhang ◽  
...  

In order to improve the photoelectric conversion efficiency of dye-sensitized solar cells (DSSC), the photoanode process conditions were optimized in this work. The effects on photoelectric conversion efficiency of three methods were mainly investigated, including magnetron sputtering barrier layer, printing scattering layer and post-treatment with TiCl4. The microstructure of TiO2thin films was measured by scanning electron microscope (SEM). The results showed that porous photoanode benefited to electronic transmission. The photoelectric conversion efficiency and performance of DSSC were measured by I-V testing instrument. The results indicated that the short circuit current and photoelectric conversion efficiency were improved. Finally, the best result was obtained by combining the three optimal conditions. A high photoelectric conversion efficiency of 7.31% was achieved under illumination of simulated AM 1.5 sunlight (100mW/cm2). Compared to the previous result of 5.48%, the improvement of 33.4% was achieved.


2011 ◽  
Vol 399-401 ◽  
pp. 1399-1402
Author(s):  
Yong De Hao ◽  
Sheng Sheng Song

The influence from the dense film coverings generated during the post treatment of TiCl4on the photoelectric conversion efficiency of the dye-sensitized solar cells (DSSCs) is investigated in the present paper. The effect of TiCl4treatment can be concluded into the following two points: 1. Covering TiO2nanoparticles with dense films and protecting the active Ti3+can enhance the electron transport. 2. The dense TiO2 is an ideal conducting film to cover the neck of nanoparticles, reduce the electron scattering and strengthen the electron transport. Acceleration of the electron transport can increase the short circuit current of the DSSCs as to obtain higher photoelectric conversion efficiency.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Le-Yan Shi ◽  
Tien-Li Chen ◽  
Chih-Hao Chen ◽  
Kun-Ching Cho

This study intends to develop the electrolyte needed in dye-sensitized solar cells (DSSCs). Moreover, three different ionic liquids in different molalities are added to the gel-type electrolyte. Experimental results show that the DSSC composed of the gel-type electrolyte with no ionic liquid added can acquire 4.13% photoelectric conversion efficiency. However, the DSSC composed of the gel-type electrolyte with 0.4 M of 1-butyl-3-methylimidazolium chloride added has an open-circuit voltage of 810 mV, a short-circuit current density of 9.56 mA/cm2, and photoelectric conversion efficiency reaching 4.89%. Comparing this DSSC with the DSSC with no ionic liquid added, the photoelectric conversion efficiency can be enhanced by 18.4%. As to durability, the DSSC composed of the gel-type electrolyte with ionic liquid added still has a photoelectric conversion efficiency of 3.28% on the 7th day after it is stored in an enclosed space and maintains 0.72% efficiency on the 14th day. When the proposed DSSC is compared with the DSSC prepared by using a liquid-type electrolyte, the durability of its photoelectric conversion efficiency can be increased by 7 times.


2011 ◽  
Vol 415-417 ◽  
pp. 1764-1768
Author(s):  
Lin Liu ◽  
Xiao Peng ◽  
Xiang Mei Yu ◽  
Ya Qing Feng

The critical material of photo-anode, the TiO2nano-particles, as the most important component in dye sensitized solar cells (DSSCs) was studied in this paper. The TiO2nanoparticles were prepared by the method of micro-emulsion. In the process of preparation, the factors including the kinds of surfactant, and the molar ratio of water to titanium (R value) were investigated. Finally, the optimal condition for the preparation of the TiO2nano-particles was determined. When Tx-100 was used as the surfactant and R was 35, the TiO2nano-particles were prepared and used as photo-anode in the DSSCs, which were sensitized by N719, test under AM1.5G sunlight. The highest photoelectric conversion efficiency was achieved: Short-circuit photocurrent (Isc) =13.91mA/cm2, open-circuit photo voltage (Voc) =0.83V, fill factor (FF) =55.06%, photoelectric conversion efficiency (η) =6.36%.


2012 ◽  
Vol 629 ◽  
pp. 332-338 ◽  
Author(s):  
Zhi Hua Tian ◽  
Jian Xi Yao ◽  
Mi Na Guli

TiO2 films with three-dimensional web-like structure have been prepared by the photo polymerization-induced phase separation method (PIPS). Scanning electron microscopy and X-ray diffraction were used to characterize the as-prepared TiO2 films. The results showed that the film texture could be tuned by changing the composition of the precursor solution. The TiO2 film with web-like structure exhibited high photocatalytic activity for the degradation of methylene blue (MB) dye. The as-prepared films were used as the photo-anodes in dye-sensitized solar cells (DSCs). The photoelectric conversion efficiency of the DSCs was significantly enhanced by changing the POGTA/TTB in the precursor solution. Because of the increased dye adsorption active sites and efficient electron transport in the TiO2 anode film, a photoelectric conversion efficiency of 3.015% was obtained.


2014 ◽  
Vol 953-954 ◽  
pp. 1095-1098 ◽  
Author(s):  
Jun Zhang ◽  
Ya Han Wu ◽  
Fang Xue ◽  
Meng Jun Yuan ◽  
Yan Huo ◽  
...  

The structural morphology, arrangement of the nanocrystalline particles, porosity factor, surface state, crystalline phase and specific area of photoelectrode film have great influence on photoelectric performance of dye sensitized solar cells (DSSCs). At present, using TiO2 as the photoelectrode in the DSSC material has achieved very good photoelectric conversion efficiency. In this paper, the plating method is adopted to directly deposited the titanium coating on the conductive glass substrate, oxidizing the surface of titanium film, so that it is generated on the surface of titanium dioxide oxidation layer. Making it as the DSSC photoelectrode, obtained relative high photoelectric conversion efficiency.


RSC Advances ◽  
2015 ◽  
Vol 5 (62) ◽  
pp. 50483-50493 ◽  
Author(s):  
Malihe Afrooz ◽  
Hossein Dehghani

In this study, triphenyl phosphate (TPP) is applied as an effective and inexpensive additive in the dye sensitized solar cells (DSSCs) and an increase in the photoelectric conversion efficiency is obtained of almost 24%.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Che-Lung Lee ◽  
Wen-Hsi Lee ◽  
Cheng-Hsien Yang

Triazoloisoquinoline-based organic dyestuffs were synthesized and used in the fabrication of dye-sensitized solar cells (DSSCs). After cosensitization with ruthenium complex, the triazoloisoquinoline-based organic dyestuffs overcame the deficiency of ruthenium dyestuff absorption in the blue part of the visible spectrum. This method also fills the blanks of ruthenium dyestuff sensitized TiO2film and forms a compact insulating molecular layer due to the nature of small molecular organic dyestuffs. The incident photon-to-electron conversion efficiency of N719 at shorter wavelength regions is 49%. After addition of a triazoloisoquinoline-based dyestuff for co-sensitization, the IPCE at 350–500 nm increased significantly. This can be attributed to the increased photocurrent of the cells, which improves the dye-sensitized photoelectric conversion efficiency from 6.23% to 7.84%, and the overall conversion efficiency increased by about 26%. As a consequence, this low molecular weight organic dyestuff is a promising candidate as coadsorbent and cosensitizer for highly efficient dye-sensitized solar cells.


Sign in / Sign up

Export Citation Format

Share Document