MEMS Relay Optimization Design Algorithm Based on Particle Swarm Optimization

2013 ◽  
Vol 562-565 ◽  
pp. 155-161
Author(s):  
Han Min Liu ◽  
Qing Hua Wu ◽  
Xue Song Yan

Mathematical model of the MEMS relay volume involves in mechanical, electrical, magnetic, thermal, etc., the MEMS relay optimization design is a constrained nonlinear function optimization problem. In this paper, aim at the disadvantages of standard Particle Swarm Optimization algorithm like being trapped easily into a local optimum, we improves the standard PSO and proposes a new algorithm to solve the overcomes of the standard PSO. The new algorithm keeps not only the fast convergence speed characteristic of PSO, but effectively improves the capability of global searching as well. Experiment results reveal that the proposed algorithm can find better solutions when compared to other heuristic methods and is a powerful optimization algorithm for MEMS relay optimization design.

2013 ◽  
Vol 427-429 ◽  
pp. 1934-1938
Author(s):  
Zhong Rong Zhang ◽  
Jin Peng Liu ◽  
Ke De Fei ◽  
Zhao Shan Niu

The aim is to improve the convergence of the algorithm, and increase the population diversity. Adaptively particles of groups fallen into local optimum is adjusted in order to realize global optimal. by judging groups spatial location of concentration and fitness variance. At the same time, the global factors are adjusted dynamically with the action of the current particle fitness. Four typical function optimization problems are drawn into simulation experiment. The results show that the improved particle swarm optimization algorithm is convergent, robust and accurate.


2013 ◽  
Vol 373-375 ◽  
pp. 1072-1075 ◽  
Author(s):  
Chang Wei Wu ◽  
Yong Hai Wu ◽  
Cong Bin Ma ◽  
Cheng Wang

Particle swarm optimization algorithms have lots of advantages such as fast convergence speed, good quality of solution and robustness in multidimensional space function optimization and dynamic target optimization. It is suitable for structural optimization design. In this paper, manual transmission gear train of a tractor is taken as research object, the minimum quality and minimum center distance of the gear train is taken as optimization goal, the gear ratio, modulus, helix angle, tooth width and equilibrium conditions of the axial force are taken as the constraints, a multi-objective optimization model of the gear train is established. The optimal structure design programs and Pareto optimal solution are obtained by using particle swarm optimization algorithm.


2013 ◽  
Vol 760-762 ◽  
pp. 2194-2198 ◽  
Author(s):  
Xue Mei Wang ◽  
Yi Zhuo Guo ◽  
Gui Jun Liu

Adaptive Particle Swarm Optimization algorithm with mutation operation based on K-means is proposed in this paper, this algorithm Combined the local searching optimization ability of K-means with the gobal searching optimization ability of Particle Swarm Optimization, the algorithm self-adaptively adjusted inertia weight according to fitness variance of population. Mutation operation was peocessed for the poor performative particle in population. The results showed that the algorithm had solved the poblems of slow convergence speed of traditional Particle Swarm Optimization algorithm and easy falling into the local optimum of K-Means, and more effectively improved clustering quality.


2018 ◽  
Vol 173 ◽  
pp. 02016
Author(s):  
Jin Liang ◽  
Wang Yongzhi ◽  
Bao Xiaodong

The common method of power load forecasting is the least squares support vector machine, but this method is very dependent on the selection of parameters. Particle swarm optimization algorithm is an algorithm suitable for optimizing the selection of support vector parameters, but it is easy to fall into the local optimum. In this paper, we propose a new particle swarm optimization algorithm, it uses non-linear inertial factor change that is used to optimize the algorithm least squares support vector machine to avoid falling into the local optimum. It aims to make the prediction accuracy of the algorithm reach the highest. The experimental results show this method is correct and effective.


2011 ◽  
Vol 308-310 ◽  
pp. 1099-1105 ◽  
Author(s):  
Hui Fan

Based the defects of global optimal model falling into local optimum easily and local model with slow convergence speed during traditional PSO algorithm solving a complex high-dimensional and multi-peak function, a two sub-swarms particle optimization algorithm is proposed. All particles are divided into two equivalent parts. One part particles adopts global evolution model, while the other part uses local evolution model. If the global optimal fitness of the whole population stagnates for some iteration, a golden rule is introduced into local evolution model. This strategy can substitute the partial perfect particles of local evolution for the equivalent worse particles of global evolution model. So, some particles with advantage are joined into the whole population to make the algorithm keep active all the time. Compared with classic PSO and PSO-GL(A dynamic global and local combined particle swarm optimization algorithm, PSO-GL), the results show that the proposed PSO in this paper can get more effective performance over the other two algorithm in the simulation experiment for four benchmark testing function.


Sign in / Sign up

Export Citation Format

Share Document