gear train
Recently Published Documents


TOTAL DOCUMENTS

823
(FIVE YEARS 197)

H-INDEX

27
(FIVE YEARS 4)

2022 ◽  
pp. 1-13
Author(s):  
Jiangang Liu ◽  
Zhipeng Tong ◽  
Yu Gao-hong ◽  
Xiong Zhao ◽  
Haili Zhou

Abstract This study proposes a new non–circular gear transmission mechanism with an involute–cycloid composite tooth profile to realize the twice unequal amplitude transmission (In a complete rotation cycle of gear transmission, instantaneous transmission ratio has twice fluctuations obvious with unequal amplitude) of non–circular gears. The twice unequal amplitude transmission ratio curve was designed based on Fourier and polynomial functions, the change law of the Fourier coefficient on the instantaneous transmission ratio(In non-circular gear transmission, the transmission ratio changes with time, and the transmission ratio of non-circular gear should be instantaneous transmission ratio) was analyzed, and the pressure angle and contact ratio of the involute–cycloid composite tooth profile was calculated. The involute–cycloid composite tooth profile non–circular gear was machined by WEDM technology, while its meshing experiment was performed using high-speed camera technology. The results demonstrate that the instantaneous transmission ratio curve value obtained via the high-speed camera experiment was consistent with the simulation value of virtual software. Furthermore, the involute–cycloid composite tooth profile was applied in the seedling pickup mechanism of non–circular gear planetary gear train. The possibility of the application of the involute–cycloid composite tooth profile in the seedling pickup mechanism was verified by comparing the consistency of the theoretical and simulated seedling picking trajectory.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

The Chaotic Gravitational Search Algorithm (CGSA) is a physics-based heuristic algorithm inspired by Newton's law of universal gravitation. It uses 10 chaotic maps for optimal global search and fast convergence rate. The advantages of CGSA has been incorporated in various Mechanical and Civil engineering design frameworks which include Speed Reducer Design (SRD), Gear Train Design (GTD), Three Bar Truss Design (TBTD), Stepped Cantilever Beam Design (SCBD), Multiple Disc Clutch Brake Design (MDCBD), and Hydrodynamic Thrust Bearing Design (HTBD). The CGSA has been compared with eleven state of the art stochastic algorithms. In addition, a non-parametric statistical test namely the Signed Wilcoxon Rank-Sum test has been carried out at a 5% significance level to statistically validate the results. The simulation results indicate that CGSA shows efficient performance in terms of high convergence speed and minimization of the design parameter values as compared to other heuristic algorithms. The source codes are publicly available on Github i.e. https://github.com/SajadAHMAD1.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiaohong Zhao ◽  
Xianguo Yan ◽  
Zhi Chen ◽  
Hang Su

Since the output torque of the rotary reducer of the ZYL-15000D-kilometer directional drill is proportional to the gear train transmission ratio, the output torque is large enough when the input speed and output speed meet the design goal. This paper selects the method of reducing the transmission ratio to optimize the size parameters of the reducer. MATLAB genetic algorithm is used in the optimization design, and the minimum volume of the rotary part reducer is taken as the objective of optimization design, while the design variables and constraints are determined. The optimal value of design variables was obtained through optimization, and the parameter values of each gear were determined accordingly. Through analysis, the total volume of the optimized gear reducer was reduced by 49.6%. Then, the 3D model of the optimized gear was created, and the analysis of the transient dynamics of the optimized gear was carried out with ANSYS Workbench software. According to the analysis results, the optimized gear met the strength requirements and provided a reference for the subsequent optimization design of other types of gear reducers.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8441
Author(s):  
Shao-En Chen ◽  
Ray-Yeng Yang ◽  
Zeng-Hui Qiu ◽  
Chia-Che Wu

In this study, a plucking-driven piezoelectric wave energy harvester (PDPWEH) consisted of a buoy, a gear train frequency up-conversion mechanism, and an array of piezoelectric cantilever beams was developed. The gear train frequency up-conversion mechanism with compact components included a rack, three gears, and a geared cam provide less energy loss to improve electrical output. Six individual piezoelectric composite beams were plucked by geared cam to generate electrical power in the array of piezoelectric cantilever beams. A sol-gel method was used to create the piezoelectric composite beams. To investigate PDPWEH, a mathematical model based on the Euler–Bernoulli beam theory was derived. The developed PDPWEH was tested in a wave flume. The wave heights were set to 100 and 75 mm, the wave periods were set to 1.0, 1.5, and 2.0 s. The maximum output voltage of the measured value was 12.4 V. The maximum RMS voltage was 5.01 V, which was measured by connecting to an external 200 kΩ resistive load. The maximum average electrical power was 125.5 μw.


2021 ◽  
Author(s):  
Lirong Wan ◽  
Hao Niu ◽  
Hanzheng Dai ◽  
Zhenguo Lu ◽  
Zhiyuan Sun ◽  
...  

2021 ◽  
Author(s):  
Muhammad Farhan Tabassum ◽  
Ali Akgul ◽  
Sana Akram ◽  
Saadia Hassan ◽  
. Saman ◽  
...  

Abstract It is very necessary and applicable to optimize all disciplines. In practical engineering problems the optimization has been a significant component. This article presents the hybrid approach named as differential gradient evolution plus (DGE+) algorithm which is the combination of differential evolution (DE) algorithm and gradient evolution (GE) algorithm. DE was used to diversify and GE was used for intensification with a perfect equilibrium between exploration and exploitation with an improvised distribution of dynamic probability and offers a new shake-off approach to prevent premature convergence to local optimum. To describe the success, the proposed algorithm is compared to modern meta-heuristics. To see the accuracy, robustness, and reliability of DGE+ it has been implemented on eight complex practical engineering problems named as: pressure vessel, belleville spring, tension/compression spring, three-bar truss, welded beam, speed reducer, gear train and rolling element bearing design problem, the results revealed that DGE+ algorithm can deliver highly efficient, competitive and promising results.


Sign in / Sign up

Export Citation Format

Share Document