Research of PSS on the Inhibiting Effect of Low Frequency Oscillation

2013 ◽  
Vol 575-576 ◽  
pp. 504-509
Author(s):  
Ang Li

With the continuous spreading of scale in power system and introducing of fast excitation system, the problem of low frequency oscillation which is arosed because of lacking-damping becomes worse and worse. This paper analyzes the mechanism reasons of insufficient-damping, using an auxiliary control unitpower system stabilizer (PSS) to increase the damping torque. Through established a simulation model of excitation control system on a typical single machine-infinite bus system, simulates the synchronous generators transient operating characteristics under large and small disturbances, and the simulation results show that the design can improve the system damping and the generator operating characteristics, increase power system dynamic stability.

2014 ◽  
Vol 536-537 ◽  
pp. 1532-1536
Author(s):  
Xin Ke Gou ◽  
Bin Qian ◽  
Run Qing Bai

This paper describes the generation of low frequency oscillations and suppression methods briefly. Observing a phenomenon of low frequency oscillation of Gansu Grid Power and analysis its actual situation. Therefore, we need establish simplified simulation model in MATLAB environment, then do the simulation with the dual power system simulation model which add to power system stabilizer. Simulation results show that: PSS can solve the problem of low frequency oscillations in a region of Gansu steel caused rapid and effective.


2019 ◽  
Vol 2 (1) ◽  
pp. 137-145
Author(s):  
Ram Prasad Pandey

In early days of power engineering, the power system consisting of synchronous generators faced different low frequency oscillation problems and they were solved by different researchers by using suitably AVR and PSS. Later, the electricity industry is turning increasingly to renewable sources of energy to generate electricity. Wind is the fastest growing and the most widely utilized emerging renewable energy technology for power generation at present. With the increasing penetration of wind power in the power system, the impact in power system performance should be fully investigated, particularly for doubly fed induction generation (DFIG) wind turbine since this type of renewable source is gaining prominence in the power system industry. Main purpose of this study is to examine the impacts of wind power integration in the low grid from low frequency oscillation perspective. The benchmarked Two Area System is considered for this analysis using Power System Analysis Toolbox (PSAT). The critical modes of oscillation are selected from eigenvalue analysis and their participation factors are studied to identify their sensitivity. Also the time domain analysis is run in every cases to study the transient stability. From TAS, concept of local and global mode oscillation can be understood clearly. Replacing synchronous generators in TAS by DFIG WTG one by one of same rating gave conclusion that low frequency stability depends on the location of DFIG penetration and operating scenario. The results show that there is both beneficial and detrimental effects due to DFIG WTGs. The installation of PSS in the critical generators greatly enhances the system damping.


2015 ◽  
Vol 781 ◽  
pp. 374-378
Author(s):  
Nurul Aziah Arzeha ◽  
Mohd Wazir Mustafa ◽  
Rasyidah Mohamed Idris

Power system is often vulnerable to low frequency electromechanical oscillations due to the interconnected configuration. A common lead-lag controller is used for one of the FACTS devices known as Thyristor Controlled Series Compensator (TCSC) as supplementary controller for damping purpose in order to improve transient stability and power oscillation damping of the system. As Bees Algorithm (BA) optimized the parameters of the TCSC lead-lag controller, thus its named is TCSC-BALL. In this study, the optimization problem is formulated as a constrained optimization with the main objective is to move the system eigenvalues to the left as far as possible in order to improve the system stability. Then, the system is simulated in MATLAB by using The Phillips-Heffron model for single machine infinite bus (SMIB) with responses of increases in mechanical power at t=1 second. The performance is observed in terms of electromechanical eigenvalues position on s-plane and damping responses of low-frequency oscillations where the system implemented with the TCSC-BALL controller given better results as compared to the system without and with the inclusion of conventional Power System Stabilizer (CPSS).


Author(s):  
Yanghai Li ◽  
Tao Yang

Low frequency oscillation is one of the most important factors that restrict the tie-line power flow of network. Its effective suppression is necessary to ensure safety and stability of the power system. The conventional power system stabilizer (PSS) is still insufficient in suppressing consider the frequency range and types of oscillation, so it is necessary to study the auxiliary suppression of the oscillation from the turbine side by using the electro-mechanical coupling theory. In this paper, a governorside power system stabilizer (GPSS) based on active power signal is designed, and its working principle, system structure and parameter setting method are introduced, the effective response frequency boundary of oscillation is also analyzed. Theoretical analysis and simulation results show that this GPSS can suppress in the whole frequency range of low frequency oscillation, and it is suitable as an auxiliary means of low frequency oscillation suppression. (CSPE)


2014 ◽  
Vol 513-517 ◽  
pp. 2855-2861 ◽  
Author(s):  
Bo Qu ◽  
Jun Yong Wu ◽  
Hong Ke Ai ◽  
Yan Heng Zhou

With the assistance of Wide Area Measurement System (WAMS), this paper proposes a method based on Prony algorithm to identify Low Frequency Oscillation (LFO) online and apply Power System Stabilizer (PSS) for rapid suppression. WAMS monitors the power system in real time with high precision. When LFO occurs in the system, applying Prony algorithm to analyze the power angle, it can identify all kinds of LFO modes online. For each mode, PSS would be rapidly configured and applied into the system. When some LFO modes are successfully suppressed, the corresponding PSSs exit. Taking the 10-generator-39-bus system of New England for example, it verifies the correctness and effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document