Uncertainty Analysis of Active SHM System

2015 ◽  
Vol 665 ◽  
pp. 249-252
Author(s):  
Marco Thiene ◽  
Zahra Sharif Khodaei ◽  
M.H. Aliabadi

Structural Health Monitoring (SHM) techniques have gained an increased interest to be utilised alongside NDI techniques for aircraft maintenance. However, to take the SHM methodologies from the laboratory conditions to actual structures under real load conditions requires them to be assessed in terms of reliability and robustness. In this work, a statistical analysis is carried out for an SHM system for damage detection and characterisation in composite structures. The sensitivity of the platform to parameters such as noise, sensor failure, placement tolerances and bonding has been investigated and reported.

2015 ◽  
Vol 665 ◽  
pp. 241-244
Author(s):  
Marco Thiene ◽  
Zahra Sharif Khodaei ◽  
M.H. Aliabadi

Structural Health Monitoring (SHM) techniques have gained an increased interest to be utilised alongside NDI techniques for aircraft maintenance. However, to take the SHM methodologies from the laboratory conditions to actual structures under real load conditions requires them to be assessed in terms of reliability and robustness. In this work, a statistical analysis is carried out for a passive SHM system capable of impact detection and identification. The sensitivity of the platform to parameters such as noise, sensor failure and in-service load conditions has been investigated and reported.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 153
Author(s):  
Sahar Hassani ◽  
Mohsen Mousavi ◽  
Amir H. Gandomi

This study presents a comprehensive review of the history of research and development of different damage-detection methods in the realm of composite structures. Different fields of engineering, such as mechanical, architectural, civil, and aerospace engineering, benefit excellent mechanical properties of composite materials. Due to their heterogeneous nature, composite materials can suffer from several complex nonlinear damage modes, including impact damage, delamination, matrix crack, fiber breakage, and voids. Therefore, early damage detection of composite structures can help avoid catastrophic events and tragic consequences, such as airplane crashes, further demanding the development of robust structural health monitoring (SHM) algorithms. This study first reviews different non-destructive damage testing techniques, then investigates vibration-based damage-detection methods along with their respective pros and cons, and concludes with a thorough discussion of a nonlinear hybrid method termed the Vibro-Acoustic Modulation technique. Advanced signal processing, machine learning, and deep learning have been widely employed for solving damage-detection problems of composite structures. Therefore, all of these methods have been fully studied. Considering the wide use of a new generation of smart composites in different applications, a section is dedicated to these materials. At the end of this paper, some final remarks and suggestions for future work are presented.


2019 ◽  
Vol 55 (7) ◽  
pp. 1-6
Author(s):  
Zhaoyuan Leong ◽  
William Holmes ◽  
James Clarke ◽  
Akshay Padki ◽  
Simon Hayes ◽  
...  

Author(s):  
Wiesław J Staszewski ◽  
Amy N Robertson

Signal processing is one of the most important elements of structural health monitoring. This paper documents applications of time-variant analysis for damage detection. Two main approaches, the time–frequency and the time–scale analyses are discussed. The discussion is illustrated by application examples relevant to damage detection.


2017 ◽  
Vol 17 (4) ◽  
pp. 815-822 ◽  
Author(s):  
Jochen Moll ◽  
Philip Arnold ◽  
Moritz Mälzer ◽  
Viktor Krozer ◽  
Dimitry Pozdniakov ◽  
...  

Structural health monitoring of wind turbine blades is challenging due to its large dimensions, as well as the complex and heterogeneous material system. In this article, we will introduce a radically new structural health monitoring approach that uses permanently installed radar sensors in the microwave and millimetre-wave frequency range for remote and in-service inspection of wind turbine blades. The radar sensor is placed at the tower of the wind turbine and irradiates the electromagnetic waves in the direction of the rotating blades. Experimental results for damage detection of complex structures will be presented in a laboratory environment for the case of a 10-mm-thick glass-fibre-reinforced plastic plate, as well as a real blade-tip sample.


2013 ◽  
Vol 569-570 ◽  
pp. 457-464 ◽  
Author(s):  
Fabio Luis Marques dos Santos ◽  
Bart Peeters ◽  
Herman van der Auweraer ◽  
Luiz Carlos Sandoval Góes

The use of composites in the aircraft industry has generated a great need for structural health monitoring and damage detection systems, to allow for safer use of complex materials. Such is the case with helicopter blades - these components nowadays are mostly composed of carbon fiber or glass fiber reinforced plastics laminates, epoxy and honeycomb filled core structures. The use of composite materials on the main rotor blade also allows for more complex and efficient shapes to be designed, but at the same time, their use requires an additional effort when it comes to structural monitoring, since damage can occur and go unnoticed. This work presents experimental results for structural health monitoring method based on strain energy. The test subject is a full-scale composite helicopter main rotor blade, which is a highly flexible, slender beam that can display unusual dynamic behavior with orthotropic behavior. This damage detection method is based on the modal strain properties, and a damage detection index is used to identify and quantify damage. A test setup was built to carry out an experimental modal analysis on the main rotor blade. For that purpose, a total of 55 uniaxial accelerometers were used on the helicopter blade to measure the displacement modes of the structure. To compute the strain modes from the displacement modes, central differences approximation is used. Damage is introduced on the blade by attaching a small mass to two different locations. Experimental results show the possibility of locating damage in this case.


Sign in / Sign up

Export Citation Format

Share Document