Optimality Conditions for Pareto-Optimal Solutions

2016 ◽  
Vol 685 ◽  
pp. 142-147
Author(s):  
Vladimir Gorbunov ◽  
Elena Sinyukova

In this paper the authors describe necessary conditions of optimality for continuous multicriteria optimization problems. It is proved that the existence of effective solutions requires that the gradients of individual criteria were linearly dependent. The set of solutions is given by system of equations. It is shown that for finding necessary and sufficient conditions for multicriteria optimization problems, it is necessary to switch to the single-criterion optimization problem with the objective function, which is the convolution of individual criteria. These results are consistent with non-linear optimization problems with equality constraints. An example can be the study of optimal solutions obtained by the method of the main criterion for Pareto optimality.

2018 ◽  
Vol 10 (2) ◽  
pp. 77 ◽  
Author(s):  
Abdoulaye Compaoré ◽  
Kounhinir Somé ◽  
Joseph Poda ◽  
Blaise Somé

In this paper, we propose a novel approach for solving some fully fuzzy L-R triangular multiobjective linear optimization programs using MOMA-plus method (Kounhinir, 2017). This approach is composed of two relevant steps such as the converting of the fully fuzzy L-R triangular multiobjective linear optimization problem into a deterministic multiobjective linear optimization and the applying of the adapting MOMA-plus method. The initial version of MOMA-plus method is designed for multiobjective deterministic optimization (Kounhinir, 2017) and having already been tested on the single-objective fuzzy programs (Abdoulaye, 2017). Our new method allow to find all of the Pareto optimal solutions of a fully fuzzy L-R triangular multiobjective linear optimization problems obtained after conversion. For highlighting the efficiency of our approach a didactic numerical example is dealt with and obtained solutions are compared to Total Objective Segregation Method proposed by Jayalakslmi and Pandia (Jayalakslmi 2014).


Author(s):  
Tadeusz Antczak ◽  
Manuel Arana Jiménez

In this paper, we introduce the concepts of KT-G-invexity and WD$-G-invexity for the considered differentiable optimization problem with inequality constraints. Using KT-G-invexity notion, we prove new necessary and sufficient optimality conditions for a new class of such nonconvex differentiable optimization problems. Further, the so-called G-Wolfe dual problem is defined for the considered extremum problem with inequality constraints. Under WD-G-invexity assumption, the necessary and sufficient conditions for weak duality between the primal optimization problem and its G-Wolfe dual problem are also established.


Axioms ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 92
Author(s):  
Febres

This document introduces a method to solve linear optimization problems. The method’s strategy is based on the bounding condition that each constraint exerts over the dimensions of the problem. The solution of a linear optimization problem is at the intersection of the constraints defining the extreme vertex. The method decomposes the n-dimensional linear problem into n-1 two-dimensional problems. After studying the role of constraints in these two-dimensional problems, we identify the constraints intersecting at the extreme vertex. We then formulate a linear equation system that directly leads to the solution of the optimization problem. The algorithm is remarkably different from previously existing linear programming algorithms in the sense that it does not iterate; it is deterministic. A fully c-sharp-coded algorithm is made available. We believe this algorithm and the methods applied for classifying constraints according to their role open up a useful framework for studying complex linear problems through feasible-space and constraint analysis.


2021 ◽  
Vol 11 (14) ◽  
pp. 6563
Author(s):  
Vladimir A. Serov

The article develops hierarchical population game models of co-evolutionary algorithms for solving the problem of multi-criteria optimization under uncertainty. The principles of vector minimax and vector minimax risk are used as the basic principles of optimality for the problem of multi-criteria optimization under uncertainty. The concept of equilibrium of a hierarchical population game with the right of the first move is defined. The necessary conditions are formulated under which the equilibrium solution of a hierarchical population game is a discrete approximation of the set of optimal solutions to the multi-criteria optimization problem under uncertainty.


2020 ◽  
Vol 18 (1) ◽  
pp. 1540-1551
Author(s):  
Jung Wook Lim ◽  
Dong Yeol Oh

Abstract Let ({\mathrm{\Gamma}},\le ) be a strictly ordered monoid, and let {{\mathrm{\Gamma}}}^{\ast }\left={\mathrm{\Gamma}}\backslash \{0\} . Let D\subseteq E be an extension of commutative rings with identity, and let I be a nonzero proper ideal of D. Set \begin{array}{l}D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {E}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(0)\in D\right\}\hspace{.5em}\text{and}\\ \hspace{0.2em}D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {D}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(\alpha )\in I,\hspace{.5em}\text{for}\hspace{.25em}\text{all}\hspace{.5em}\alpha \in {{\mathrm{\Gamma}}}^{\ast }\right\}.\end{array} In this paper, we give necessary conditions for the rings D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively ordered, and sufficient conditions for the rings D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively totally ordered. Moreover, we give a necessary and sufficient condition for the ring D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively totally ordered. As corollaries, we give equivalent conditions for the rings D+({X}_{1},\ldots ,{X}_{n})E{[}{X}_{1},\ldots ,{X}_{n}] and D+({X}_{1},\ldots ,{X}_{n})I{[}{X}_{1},\ldots ,{X}_{n}] to be Noetherian.


Sign in / Sign up

Export Citation Format

Share Document