scholarly journals Efficiency of MOMA-plus Method to Solve Some Fully Fuzzy L-R Triangular Multiobjective Linear Programs

2018 ◽  
Vol 10 (2) ◽  
pp. 77 ◽  
Author(s):  
Abdoulaye Compaoré ◽  
Kounhinir Somé ◽  
Joseph Poda ◽  
Blaise Somé

In this paper, we propose a novel approach for solving some fully fuzzy L-R triangular multiobjective linear optimization programs using MOMA-plus method (Kounhinir, 2017). This approach is composed of two relevant steps such as the converting of the fully fuzzy L-R triangular multiobjective linear optimization problem into a deterministic multiobjective linear optimization and the applying of the adapting MOMA-plus method. The initial version of MOMA-plus method is designed for multiobjective deterministic optimization (Kounhinir, 2017) and having already been tested on the single-objective fuzzy programs (Abdoulaye, 2017). Our new method allow to find all of the Pareto optimal solutions of a fully fuzzy L-R triangular multiobjective linear optimization problems obtained after conversion. For highlighting the efficiency of our approach a didactic numerical example is dealt with and obtained solutions are compared to Total Objective Segregation Method proposed by Jayalakslmi and Pandia (Jayalakslmi 2014).


2016 ◽  
Vol 685 ◽  
pp. 142-147
Author(s):  
Vladimir Gorbunov ◽  
Elena Sinyukova

In this paper the authors describe necessary conditions of optimality for continuous multicriteria optimization problems. It is proved that the existence of effective solutions requires that the gradients of individual criteria were linearly dependent. The set of solutions is given by system of equations. It is shown that for finding necessary and sufficient conditions for multicriteria optimization problems, it is necessary to switch to the single-criterion optimization problem with the objective function, which is the convolution of individual criteria. These results are consistent with non-linear optimization problems with equality constraints. An example can be the study of optimal solutions obtained by the method of the main criterion for Pareto optimality.



Author(s):  
Kaisheng Liu ◽  
Yumei Xing

This article puts forward the bi-matrix games with crisp parametric payoffs based on interval value function approach. We conclude that the equilibrium solution of the game model can converted into optimal solutions of the pair of the non-linear optimization problem. Finally, experiment results show the efficiency of the model.



2021 ◽  
pp. 2150005
Author(s):  
Alireza Ghaffari-Hadigheh

Uncertainty theory has been initiated in 2007 by Liu, as an axiomatically developed notion, which considers the uncertainty on data as a belief degree on the domain expert’s opinion. Uncertain linear optimization is devised to model linear programs in an uncertain environment. In this paper, we investigate the relation between uncertain linear optimization and parametric programming. It is denoted that the problem can be converted to parametric linear optimization problem, at which belief degrees play the role of parameters, and parametric linear optimization with its rich literature provides insightful interpretations. In a point of view, a strictly complementary optimal solution of problem is known for the belief degree [Formula: see text], as well as the associated optimal partition. One may be interested in knowing the region of belief degrees (parameters) where this optimal partition remains invariant for all parameter values (belief degrees) in this region. We consider the linear optimization problem with uncertain rim data, i.e., the right-hand side and the objective function data. The known results in the literature are translated to the language of uncertainty theory, and managerial interpretations are provided. The methodology is illustrated via concrete examples.



2012 ◽  
Vol 20 (1) ◽  
pp. 27-62 ◽  
Author(s):  
Kalyanmoy Deb ◽  
Amit Saha

In a multimodal optimization task, the main purpose is to find multiple optimal solutions (global and local), so that the user can have better knowledge about different optimal solutions in the search space and as and when needed, the current solution may be switched to another suitable optimum solution. To this end, evolutionary optimization algorithms (EA) stand as viable methodologies mainly due to their ability to find and capture multiple solutions within a population in a single simulation run. With the preselection method suggested in 1970, there has been a steady suggestion of new algorithms. Most of these methodologies employed a niching scheme in an existing single-objective evolutionary algorithm framework so that similar solutions in a population are deemphasized in order to focus and maintain multiple distant yet near-optimal solutions. In this paper, we use a completely different strategy in which the single-objective multimodal optimization problem is converted into a suitable bi-objective optimization problem so that all optimal solutions become members of the resulting weak Pareto-optimal set. With the modified definitions of domination and different formulations of an artificially created additional objective function, we present successful results on problems with as large as 500 optima. Most past multimodal EA studies considered problems having only a few variables. In this paper, we have solved up to 16-variable test problems having as many as 48 optimal solutions and for the first time suggested multimodal constrained test problems which are scalable in terms of number of optima, constraints, and variables. The concept of using bi-objective optimization for solving single-objective multimodal optimization problems seems novel and interesting, and more importantly opens up further avenues for research and application.



Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1258 ◽  
Author(s):  
Yumei Xing ◽  
Dong Qiu

In this paper, the matrix game based on triangular intuitionistic fuzzy payoff is put forward. Then, we get a conclusion that the equilibrium solution of this game model is equivalent to the solution of a pair of the primal–dual single objective intuitionistic fuzzy linear optimization problems ( I F L O P 1 ) and ( I F L O D 1 ) . Furthermore, by applying the accuracy function, which is linear, we transform the primal–dual single objective intuitionistic fuzzy linear optimization problems ( I F L O P 1 ) and ( I F L O D 1 ) into the primal–dual discrete linear optimization problems ( G L O P 1 ) and ( G L O D 1 ) . The above primal–dual pair ( G L O P 1 ) – ( G L O D 1 ) is symmetric in the sense the dual of ( G L O D 1 ) is ( G L O P 1 ) . Thus the primal–dual discrete linear optimization problems ( G L O P 1 ) and ( G L O D 1 ) are called the symmetric primal–dual discrete linear optimization problems. Finally, the technique is illustrated by an example.



Axioms ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 92
Author(s):  
Febres

This document introduces a method to solve linear optimization problems. The method’s strategy is based on the bounding condition that each constraint exerts over the dimensions of the problem. The solution of a linear optimization problem is at the intersection of the constraints defining the extreme vertex. The method decomposes the n-dimensional linear problem into n-1 two-dimensional problems. After studying the role of constraints in these two-dimensional problems, we identify the constraints intersecting at the extreme vertex. We then formulate a linear equation system that directly leads to the solution of the optimization problem. The algorithm is remarkably different from previously existing linear programming algorithms in the sense that it does not iterate; it is deterministic. A fully c-sharp-coded algorithm is made available. We believe this algorithm and the methods applied for classifying constraints according to their role open up a useful framework for studying complex linear problems through feasible-space and constraint analysis.



2014 ◽  
Vol 685 ◽  
pp. 667-670 ◽  
Author(s):  
Ding Han ◽  
Jian Rong Zheng

A method which utilizes Kriging model and a multi-point updating strategy is put forward for solving expensive multi-objective optimization problems. Assisted by a defined cheaper multi-objective optimization problem and a maximum average distance criterion, multiple updating points can be found. The proposed method is tested on two numerical functions and a ten-bar truss problem, the results show that the proposed method is efficient in obtaining Pareto optimal solutions with good convergence and diversity when the same computation resource is used comparing with two other methods.



2018 ◽  
Vol 1 (1) ◽  
pp. 1-10
Author(s):  
S. Dempe ◽  
G. Luo ◽  
S. Franke

In this paper, we investigate the pessimistic bilevel linear optimization problem (PBLOP). Based on the lower level optimal value function and duality, the PBLOP can be transformed to a single-level while nonconvex and nonsmooth optimization problem. By use of linear optimization duality, we obtain a tractable and equivalent transformation and propose algorithms for computing global or local optimal solutions. One small example is presented to illustrate the feasibility of the method.  



2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Hamid Reza Erfanian ◽  
M. H. Noori Skandari ◽  
A. V. Kamyad

We present a new approach for solving nonsmooth optimization problems and a system of nonsmooth equations which is based on generalized derivative. For this purpose, we introduce the first order of generalized Taylor expansion of nonsmooth functions and replace it with smooth functions. In other words, nonsmooth function is approximated by a piecewise linear function based on generalized derivative. In the next step, we solve smooth linear optimization problem whose optimal solution is an approximate solution of main problem. Then, we apply the results for solving system of nonsmooth equations. Finally, for efficiency of our approach some numerical examples have been presented.



Sign in / Sign up

Export Citation Format

Share Document