Geometrical Modeling of Tool-Workpiece Contact Zone and Chip Formation in Finish Ball End Milling Process with Tool Inclination Angles

2016 ◽  
Vol 693 ◽  
pp. 788-794
Author(s):  
Xiao Xiao Chen ◽  
Jun Zhao

The tool-workpiece contact zone is an important issue in the ball end milling process. This paper investigated the effects of tool inclination angles on the tool-workpiece contact zone, and variations of the cutting section area and perimeter with the increasing tilt and lead angles were also analyzed by geometrical modeling and measurement method for ball end milling process. The appropriate tool inclination angles, which could avoid the extrusion and friction between tool tip and the uncut materials, shorten the loading time on the cutting flute, and decrease the maximum cutting forces, could be preferentially selected according to the distribution characteristics of the tool-workpiece contact zone and the variations of the cutting section area and perimeter corresponding to various tool postures.

2011 ◽  
Vol 121-126 ◽  
pp. 2059-2063 ◽  
Author(s):  
Somkiat Tangjitsitcharoen ◽  
Angsumalin Senjuntichai

In order to realize the intelligent machines, the practical model is proposed to predict the in-process surface roughness during the ball-end milling process by utilizing the cutting force ratio. The ratio of cutting force is proposed to be generalized and non-scaled to estimate the surface roughness regardless of the cutting conditions. The proposed in-process surface roughness model is developed based on the experimentally obtained data by employing the exponential function with five factors of the spindle speed, the feed rate, the tool diameter, the depth of cut, and the cutting force ratio. The prediction accuracy and the prediction interval of the in-process surface roughness model at 95% confident level are calculated and proposed to predict the distribution of individually predicted points in which the in-process predicted surface roughness will fall. All those parameters have their own characteristics to the arithmetic surface roughness and the surface roughness. It is proved by the cutting tests that the proposed and developed in-process surface roughness model can be used to predict the in-process surface roughness by utilizing the cutting force ratio with the highly acceptable prediction accuracy.


2001 ◽  
Author(s):  
Ismail Lazoglu

Abstract In this paper, a new mechanistic model is developed for the prediction of cutting force system in ball-end milling process. The key feature of the model includes the ability to calculate the workpiece / cutter intersection domain automatically for a given cutter location (CL) file, cutter and workpiece geometries. Moreover, an analytical approach is used to determine the instantaneous chip load and cutting forces. The model also employs a Boolean approach for given cutter, workpiece geometries, and the CL file in order to determine the surface topography and scallop height variations along the workpiece surface which can be visualized in 3-D. Some of the typical results from the model validation experiments performed on Ti-6A1-4V are also reported in the paper. Comparisons of the predicted and measured forces as well as the surface topographies show good agreement.


2001 ◽  
Vol 2001.7 (0) ◽  
pp. 59-60
Author(s):  
Takashi MATSUMURA ◽  
Takahiro Haibara ◽  
Eiji USUI

Sign in / Sign up

Export Citation Format

Share Document