Enhanced Catalytic Activity of Pt for Electrooxidation of Ethanol by Using Silica-Carbon Composite as the Catalyst Support

2016 ◽  
Vol 698 ◽  
pp. 47-52 ◽  
Author(s):  
Hirokazu Ishitobi ◽  
Yurina Ino ◽  
Nobuyoshi Nakagawa

The technical issue of direct ethanol fuel cells is slow kinetics of ethanol electrooxidation by using noble metals such as Pt. We propose silica-embedded carbon nanofiber (SECNF) as a catalyst support for the electrooxidation of ethanol to improve catalytic activity of Pt. SECNF was prepared by electrospinning, then Pt nanoparticles were deposited on SECNF. Catalyst characterizations were performed by SEM, EDX, and XRD. Cyclic voltammetry was performed to analyze catalytic activity of Pt/SECNF. The mass activity of Pt/SECNF was 2.9 times higher than a commercially available Pt/carbon catalyst (Pt/Ccom). Electrochemically active surface area of Pt/SECNF was lower than Pt/Ccom. Hence, the activity enhancement is attributed to the improvement of specific activity for Pt/SECNF. This enhancement is attributed to the interaction between Pt and SiO2 like hydrogen spillover. Pt/SECNF is a promising catalyst for direct ethanol fuel cells which can reduce Pt loading.

2014 ◽  
Vol 39 (28) ◽  
pp. 15907-15912 ◽  
Author(s):  
Yumi Oh ◽  
Sang-Kyung Kim ◽  
Dong-Hyun Peck ◽  
Jin-sung Jang ◽  
Jiyoung Kim ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 712
Author(s):  
Alexandra Kuriganova ◽  
Daria Chernysheva ◽  
Nikita Faddeev ◽  
Igor Leontyev ◽  
Nina Smirnova ◽  
...  

Pt/C, PtMOn/C (M = Ni, Sn, Ti, and PtX/C (X = Rh, Ir) catalyst systems were prepared by using the pulse alternating current (PAC) technique. Physical and electrochemical parameters of samples were carried out by x-ray powder diffraction (XRD), transmission electron microscopy (TEM), and CO stripping. The catalytic activity of the synthesized samples for the ethanol electrooxidation reaction (EOR) was investigated. The XRD patterns of the samples showed the presence of diffraction peaks characteristic for Pt, NiO, SnO2, TiO2, Rh, and Ir. The TEM images indicate that the Pt, Rh, and PtIr (alloys) particles had a uniform distribution over the carbon surface in the Pt/C, PtRh/C, PtIr/C, and PtMOn/C (M = Ni, Sn, Ti) catalysts. The electrochemically active surface area of catalysts was determined by the CO-stripping method. The addition of a second element to Pt or the use of hybrid supported catalysts can evidently improve the EOR activity. A remarkable positive affecting shift of the onset potential for the EOR was observed as follows: PtSnO2/C > PtTiO2/C ≈ PtIr/C ≈ PtNiO/C > PtRh/C ≈ Pt/C. The addition of SnO2 to Pt/C catalyst led to the decrease of the onset potential and to significantly facilitate the EOR. The long-term cyclic stability of the synthesized catalysts was investigated. Thereby, the PtSnO2/C catalyst prepared by the PAC technique can be considered as a promising anode catalyst for direct ethanol fuel cells.


2015 ◽  
Vol 8 (1) ◽  
pp. 716-725 ◽  
Author(s):  
Laura Calvillo ◽  
Gonzalo García ◽  
Andrea Paduano ◽  
Olmedo Guillen-Villafuerte ◽  
Carlos Valero-Vidal ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 1740 ◽  
Author(s):  
Selestina Gorgieva ◽  
Azra Osmić ◽  
Silvo Hribernik ◽  
Mojca Božič ◽  
Jurij Svete ◽  
...  

Herein, we prepared a series of nanocomposite membranes based on chitosan (CS) and three compositionally and structurally different N-doped graphene derivatives. Two-dimensional (2D) and quasi 1D N-doped reduced graphene oxides (N-rGO) and nanoribbons (N-rGONRs), as well as 3D porous N-doped graphitic polyenaminone particles (N-pEAO), were synthesized and characterized fully to confirm their graphitic structure, morphology, and nitrogen (pyridinic, pyrrolic, and quaternary or graphitic) group contents. The largest (0.07%) loading of N-doped graphene derivatives impacted the morphology of the CS membrane significantly, reducing the crystallinity, tensile properties, and the KOH uptake, and increasing (by almost 10-fold) the ethanol permeability. Within direct alkaline ethanol test cells, it was found that CS/N rGONRs (0.07 %) membrane (Pmax. = 3.7 mWcm−2) outperformed the pristine CS membrane significantly (Pmax. = 2.2 mWcm−2), suggesting the potential of the newly proposed membranes for application in direct ethanol fuel cells.


2021 ◽  
Author(s):  
Suhaila Abdullah ◽  
Norazlina Hashim ◽  
Nurul Aniyyah Mohd Shobery ◽  
Nabihah Abdullah ◽  
lily Shakirah Hassan

Sign in / Sign up

Export Citation Format

Share Document