Volume 1A: Codes and Standards
Latest Publications


TOTAL DOCUMENTS

77
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791851586

Author(s):  
Mikhail A. Sokolov

Mini-CT specimens are becoming a highly popular geometry for use in reactor pressure vessel (RPV) community for direct measurement of fracture toughness in the transition region using the Master Curve methodology. In the present study, Mini-CT specimens were machined from previously tested Charpy specimens of the Midland low upper-shelf Linde 80 weld in both, unirradiated and irradiated conditions. The irradiated specimens have been characterized as part of a joint ORNL-EPRI-CRIEPI collaborative program. The Linde 80 weld was selected because it has been extensively characterized in the irradiated condition by conventional specimens, and because of the need to validate application of Mini-CT specimens for low upper-shelf materials — a more likely case for some irradiated materials of older generation RPVs. It is shown that the fracture toughness reference temperatures, To, derived from these Mini-CT specimens are in good agreement with To values previously recorded for this material in the unirradiated and irradiated conditions. However, this study indicates that in real practice it is highly advisable to use a much larger number of specimens than the minimum number prescribed in ASTM E1921.


Author(s):  
Xianjun Pei ◽  
Pingsha Dong ◽  
Shaopin Song ◽  
David Osage

As a further extension to the structural strain method first introduced by Dong et al [1], this paper presents an enhanced structural strain method which incorporates material nonlinearity and for two typical weld structures, i.e. weldment with plate sections (e.g. gusset weld or cruciform weld etc.) and weldment with beam sections. (e.g. pipe structures). A modified Ramberg-Osgood is introduced to capture nonlinear stress strain behavior of the material. A set of numerical algorithms is used to deal with complex stress state induced by structural effect such as beam section and plane strain condition. The proposed structural strain method is then applied to analysis of fatigue data of weldment made from different materials including steel, aluminum and titanium. It is shown that the enhanced structural strain method provides a unified way to correlate fatigue life of weldment in both high cycle and low cycle fatigue regime. The method is also used to study ratcheting problem raised up by Bree. A modified Bree diagram is given by considering material nonlinearity.


Author(s):  
Akihide Nagao ◽  
Nobuyuki Ishikawa ◽  
Toshio Takano

Cr-Mo and Ni-Cr-Mo high-strength low-alloy steels are candidate materials for the storage of high-pressure hydrogen gas. Forging materials of these steels have been used for such an environment, while there has been a strong demand for a higher performance material with high resistance to hydrogen embrittlement at lower cost. Thus, mechanical properties of Cr-Mo and Ni-Cr-Mo steels made of quenched and tempered seamless pipes in high-pressure hydrogen gas up to 105 MPa were examined in this study. The mechanical properties were deteriorated in the presence of hydrogen that appeared in reduction in local elongation, decrease in fracture toughness and accelerated fatigue-crack growth rate, although the presence of hydrogen did not affect yield and ultimate tensile strengths and made little difference to the fatigue endurance limit. It is proposed that pressure vessels for the storage of gaseous hydrogen made of these seamless line pipe steels can be designed.


Author(s):  
Thomas Métais ◽  
Andrew Morley ◽  
Laurent de Baglion ◽  
David Tice ◽  
Gary L. Stevens ◽  
...  

Additional fatigue rules within the ASME Boiler and Pressure Vessel Code have been developed over the past decade or so, such as those in Code Case N-792-1 [1], which provides an acceptable method to describe the effects of BWR and PWR environments on the fatigue life of components. The incorporation of environmental effects into fatigue calculations is performed via an environmental factor, Fen, and depends on factors such as the temperature, dissolved oxygen and strain rate. In the case of strain rate, lower strain rates (i.e., from slow transients) aggravate the Fen factor which counters the long-held notion that step (fast) transients cause the highest fatigue usage. A wide range of other factors, such as surface finish, can have a deleterious impact on fatigue life, but their impact on fatigue life is typically considered by including transition sub-factors to construct the fatigue design curve from the mean behavior air curve rather than in an explicit way, such as the Fen factor. An extensive amount of testing and evaluation has been conducted and reported in References [2] [3] [4] [5] [6] [7] and [8] that were used to both revise the transition factors and devise the Fen equations contained in Code Case N-792-1. The testing supporting the definition of Fen was performed on small-scale laboratory specimens with a polished surface finish on the basis that the Fen factor is applicable to the design curve without any impact on the transition factors. The work initiated by AREVA in 2005 [4] [5] [6] suggested, in testing of austenitic stainless steels, an interaction between the two aggravating effects of surface finish and PWR environment on fatigue damage. These results have been supported by testing carried out independently in the UK by Rolls-Royce and AMEC Foster Wheeler (now Wood Group) [7], also on austenitic stainless steels. The key finding from these investigations is that the combined detrimental effects of a PWR environment and a rough surface finish are substantially less than the sum of the two individual effects. These results are all the more relevant as most nuclear power plant (NPP) components do not have a polished surface finish. Most NPP component surfaces are either industrially ground or installed as-manufactured. The previous studies concluded that explicit consideration of the combined effects of environment and surface finish could potentially be applicable to a wide range of NPP components and would therefore be of interest to a wider community: EDF has therefore authored a draft Code Case introducing a factor, Fen-threshold, which explicitly quantifies the interaction between PWR environment and surface finish, as well as taking some credit for other conservatisms in the sub-factors that comprise the life transition sub-factor used to build the design fatigue curve . The contents of the draft Code Case were presented last year [9]. Since then, other international organizations have also made progress on these topics and developed their own views. The work performed is applicable to Austenitic Stainless Steels only for the time being. This paper aims therefore to present an update of the draft Code Case based on comments received to-date, and introduces some of the research and discussions which have been ongoing on this topic as part of an international EPRI collaborative group on environmental fatigue issues. It is intended to work towards an international consensus for a final version of the ASME Code Case for Fen-threshold.


Author(s):  
Thanh-Long Nguyen ◽  
Myeong-Woo Lee ◽  
Kunio Hasegawa ◽  
Yun-Jae Kim

In this study, the effect of longitudinal distance H between non-aligned twin cracks is investigated using finite element damage analysis. The FE damage analysis based on the stress-modified fracture strain model is used to calculate the failure stress of non-aligned twin cracked pipe. Parametric study on the axial distance H between non-aligned twin cracks with various crack depths and lengths were conducted and compared with predictions using the alignment rules and the net-section collapse load approach for single crack provided in ASME Code. It is shown that the trend of the predicted collapse bending stresses for the non-aligned twin cracked pipes using FE damage analysis are different from the ones using the alignment rule.


Author(s):  
Sam Cuvilliez ◽  
Gaëlle Léopold ◽  
Thomas Métais

Environmentally Assisted Fatigue (EAF) is receiving nowadays an increased level of attention for existing Nuclear Power Plants (NPPs) as utilities are now working to extend their life. In the wake of numerous experimental fatigue tests carried out in air and also in a PWR environment, the French RCC-M code [1] has recently been amended (in its 2016 edition) with two Rules in Probatory Phase (RPP), equivalent to ASME code-cases, “RPP-2” and “RPP-3” [2] [3]. RPP-2 consists of an update of the design fatigue curve in air for stainless steels (SSs) and nickel-based alloys, and is also associated with RPP-3 which provides guidelines for incorporating the environmental penalty “Fen” factor in fatigue usage factor calculations. Alongside this codification effort, an EAF screening has recently been carried out within EDF DT [4] on various areas of the primary circuit of the 900 MWe plants of the EDF fleet. This screening led to the identification of a list of 35 “sentinel locations” which are defined as areas most prone to EAF degradation process. These locations will be subjected to detailed EAF analysis in the stress report calculations (according to the above-mentioned RCC-M code cases) for the fourth decennial inspection of the 900 MWe (VD4 900 MWe) power plants. The potential impact of EAF on the secondary circuit components is another question to address in anticipation of the VD4 900 MWe, as they may be considered as class 1 or class 2 equipment for RCC-M application according to the equipment specification. This paper presents the approach proposed by EDF towards an exemption of environmental effects consideration for secondary circuit components. The argument is first based on a review of experimental campaigns led in Japan and France (respectively on fatigue test specimens and at the component scale) which indicate a Dissolved Oxygen (DO) content threshold below which environmental effects are almost inexistent. The (conservative) value of 40 ppb has been selected consistently with NUREG/CR-6909 revision 0 [5]. The second part of the argument is built, on the one hand, on the analysis of the EDF Technical Specifications for Operation (STE) which narrows the scope of the study only to unit outages, and, on the other hand, on the analysis of 5 years of operations of all 900 MWe plants of the EDF fleet (equivalent to 170 reactor-years). It has been shown that the DO content rarely exceeded the 40 ppb threshold in the secondary coolant, and that in this case, the considered locations were not submitted to any fatigue loading.


Author(s):  
Takahisa Nose ◽  
Takao Nakamura ◽  
Takanori Kitada

In order to conduct effective and rational maintenance activity of components in nuclear power plants, it is proposed to manage fatigue degradation based on crack size corresponding to an extent of cumulative fatigue damage. The purpose of this study focuses on the influence of strain rate in simulated reactor coolant environment for fatigue crack initiation and growth. 3-dimensional replica observations were conducted for environmental fatigue test specimens in different strain rates. Crack initiation and growth were observed in the experiments. It is clarified that low strain rate influences crack propagation and coalescence and increases crack growth rate that finally decrease fatigue life.


Author(s):  
Jussi Solin ◽  
Jouni Alhainen ◽  
Tommi Seppänen ◽  
H. Ertugrul Karabaki ◽  
Wolfgang Mayinger

Strain controlled LCF testing extended to 10 million cycles revealed an abrupt endurance limit enforced by secondary hardening. In elevated temperatures the ε-N curve is rotated and endurance limit is lowered, but not vanished. When very low strain rates are applied at 325°C in simulated PWR environment, fatigue life is reduced, but far less than predicted according to NUREG/CR-6909. It is possible, but not probable that the difference is due to different stainless grades studied. We assume that the test method plays a more important role. We have repeatedly demonstrated in different tests campaigns that interruptions of straining with holds aiming to simulate steady state normal operation between fatigue relevant cycles can notably extend the fatigue endurance. Further proof is again presented in this paper. The suspected explanation is prevention of strain localization within the material microstructure and also in geometric strain concentrations. This actually suggests, that hold effects should be even more pronounced in real components. Cyclic behavior of austenitic steels is very complex. Transferability of laboratory data to NPP operational conditions depends on test environment, temperature, strain rate and holds in many ways not considered in current fatigue assessment procedures. In addition to penalty factors, also bonus factors are needed to improve transferability. Furthermore, it seems that the load carrying capacity of fatigued stainless steel is not compromised before the crack growth phase. Tensile tests performed after fatigue tests interrupted shortly before end-of-life condition in 325°C (N ≈ 0.85 × N25) showed strength and ductility almost identical to virgin material. This paper provides new experimental results and discusses previous observations aiming to sum up a state of the art in fatigue performance of German NPP primary loop materials.


Author(s):  
Kiminobu Hojo ◽  
Steven Xu

In ASME Section XI Appendix C for analytical evaluation of flaws in piping, a screening procedure is prescribed to determine the failure mode and analysis method for the flawed pipe. The end-of-evaluation period flaw dimensions, temperature, material properties, and pipe loadings are considered in the screening procedure. Equations necessary to calculate components of the screening criteria (SC) include stress intensity factor (K) equations. The K-equation for a pipe with a circumferential inside surface flaw in the 2017 Edition Section XI Appendix C-4000 is for a fan-shaped flaw. Real surface flaws are closer to semi-elliptical shape. As part of Section XI Working Group on Pipe Flaw Evaluation (WGPFE) activities, revision to stress intensity factor equations for circumferential surface flaws in Appendix C-4000 has been proposed. The proposed equations include closed-form equations for stress intensity influence coefficients G0 for membrane stress and Ggb for global bending stress for circumferential inside surface flaws. The rationale for the Code changes and technical basis for the proposed stress intensity factor equations are provided in this paper.


Sign in / Sign up

Export Citation Format

Share Document