Residual Stress Distribution in Graded PSZ/Inconel Composite Deposited by Particle Collision

2004 ◽  
Vol 449-452 ◽  
pp. 761-764 ◽  
Author(s):  
Do Won Seo

Interfacial strength distribution and thermal residual stresses in multi-layered or compositionally graded NiCrAlY/ZrO2 coatings are analyzed. These coatings are fabricated by detonation gun spraying using mechanically alloyed, plasma-spheroidized composite powders. The problems in design of functionally graded materials (FGMs) are outlined and their modeling approaches are reviewed. Due to the concentrational or structural gradients in FGMs, the normal approximations and models, used for traditional composites, are not directly applicable to graded materials. The goal is to show the efficiency of the simplest models to provide the most accurate estimates of the properties and even to make simple elasto-plastic analysis of FGM components without vast computations by finite element methods with an arbitrary non-linear distribution of phases and corresponding properties is presented. Results showed that bonding strengths increased gradually with increase of the composition of metals in the FGM coatings. The FGM coating was more stable on the mechanical properties than normal duplex composites. And, the maximum compressive radial stress is found to be at or near the surface of the specimen where surface cracking may be generated. The maximum axial stress is at the edge of the specimen where spallation may occur. The maximum shear stress is also at or close to the edge.

2014 ◽  
Vol 10 (1) ◽  
pp. 94-105
Author(s):  
Manish Garg ◽  
Dharmpal Deepak ◽  
V.K. Gupta

Purpose – The purpose of this paper is to investigate creep in an internally pressurized thick-walled, closed ends cylinder made of functionally graded composite, having linear and non-linear distribution of reinforcement, using finite element (FE) analysis. Design/methodology/approach – FE-based Abaqus software is used to investigate creep behavior of a functionally graded cylinder. The cylinder is made of composite containing linear and non-linearly varying distributions of reinforcement along the radius. The creep behavior has been described by Norton's power law. The creep stresses and strains have been estimated in linear and non-linear functionally graded materials (FGM) cylinders and compared with those estimated for a similar composite cylinder but having uniform distribution of reinforcement. Findings – The radial stress in the composite cylinder is observed to decreases over the entire radius upon imposing linear or non-linear reinforcement gradients. However, the tangential stress in the cylinder increases near the inner radius but decreases toward the outer radius, on imposing linear or non-linear reinforcement gradients. The creep strains in the FGM cylinders are significantly lower than those observed in a uniform composite cylinder. Originality/value – The creep strains in an internally pressurized functionally graded thick composite cylinder could be reduced significantly by employing non-linear distribution of reinforcement along the radial direction.


2008 ◽  
Vol 75 (5) ◽  
Author(s):  
Kwang Ho Lee ◽  
Vijaya Bhaskar Chalivendra ◽  
Arun Shukla

Thermomechanical stress and displacement fields for a propagating crack in functionally graded materials (FGMs) are developed using displacement potentials and asymptotic analysis. The shear modulus, mass density, and coefficient of thermal expansion of the FGMs are assumed to vary exponentially along the gradation direction. Temperature and heat flux distribution fields are also derived for an exponential variation of thermal conductivity. The mode mixity due to mixed-mode loading conditions around the crack tip is accommodated in the analysis through the superposition of opening and shear modes. Using the asymptotic stress fields, the contours of isochromatics (contours of constant maximum shear stress) are developed and the results are discussed for various crack-tip thermomechanical loading conditions.


2021 ◽  
Vol 39 (5) ◽  
pp. 1430-1442
Author(s):  
Roman Kulchytsky-Zhyhailo ◽  
Stanisław J. Matysiak ◽  
Dariusz M. Perkowski

The paper deals with the thermoelastic problem of a multilayered pipe subjected to normal loadings on its inner surface and temperature differences on its internal and external surfaces. Two types of nonhomogeneous pipe materials of pipe are considered: (1) a ring-layered composite composed of two repeated thermoelastic solids with varying thickness and (2) a functionally graded ring layer. The ring-layered pipe with periodic structure is investigated by using the homogenized model with microlocal parameters. A homogenization approach is proposed for the modelling of the FGM pipe. The analysis of obtained circumferential, radial and axial stress is presented in the form of figures and discussed in detail. It was shown that the proposed approach to the homogenization allows us to correctly calculate the averaged characteristics in the representative cell (the macro-characteristics) and also the characteristics dependent on the choice of the component in the representative cell (the micro-characteristics) for both microperiodic composites and functionally graded materials.


2002 ◽  
Vol 69 (3) ◽  
pp. 240-243 ◽  
Author(s):  
V. Parameswaran ◽  
A. Shukla

Stress field for stationary cracks, aligned along the gradient, in functionally graded materials is obtained through an asymptotic analysis coupled with Westergaard’s stress function approach. The first six terms of the stress field are obtained for both opening mode and shear mode loading. It is observed that the structure of the terms other than r−1/2 and r0 are influenced by the nonhomogeneity. Using this stress field, contours of constant maximum shear stress are generated and the effect of nonhomogeneity on these contours is discussed.


Author(s):  
Carlos Alberto Dutra Fraga Filho ◽  
Fernando César Meira Menandro ◽  
Rivânia Hermógenes Paulino de Romero ◽  
Juan Sérgio Romero Saenz

Sign in / Sign up

Export Citation Format

Share Document