Numerical Simulation on the Liquid Metal Flow of the Acceleration Phase in the Shot Sleeve of Cold Chamber Die Casting Process

2007 ◽  
Vol 561-565 ◽  
pp. 1801-1804
Author(s):  
Jie Yang ◽  
Lang Yuan ◽  
Shou Mei Xiong ◽  
Bai Cheng Liu

Slow shot velocity and its acceleration phase in the shot sleeve have great influence on the flow pattern of the liquid metal in the shot sleeve. In this paper, a three-dimensional model based on the SOLA-VOF algorithm was developed and used to simulate the flow of melt in the shot sleeve. The mathematical model was verified by water analog experiments with constant plunger velocities. Based on numerical simulation results, the influences of the plunger acceleration on the wave profile of the liquid metal in the shot sleeve under different fill ratios and sleeve diameters were investigated. The results indicated that in order to avoid air entrapment in the shot sleeve, the optimal acceleration value to the critical slow shot velocity increases with the increase of the fill ratio, and the range of suitable acceleration becomes wider as well. With the same fill ratio, the value of suitable acceleration rises as the plunger diameter increases.

2020 ◽  
Vol 12 (5) ◽  
pp. 168781402092345
Author(s):  
Kaikui Zheng ◽  
Youxi Lin ◽  
Weiping Chen ◽  
Lei Liu

The water-meter shell has a complex-structured thin-walled cavity, and it can cause casting defects such as shrinkage and misrun. On the basis of structural analysis of a water-meter shell, a three-dimensional model and a finite element model of the water-meter shell were constructed using the SOLIDWORKS and ProCAST software as a modeling tool and a casting numerical simulation tool, respectively. Three processes associated with the bottom gating system without a riser, a step gating system with a preliminary riser, and a step gating system with an optimum riser were successively numerically simulated. The mold-filling sequence, temperature distribution, liquid-phase distribution during solidification, and shrinkage distribution of these three processes are discussed here. The numerical simulation results indicated that optimization of the casting process and the rational assembling of the riser led to the shrinkage volumes at the inlet position, regulating sleeve, and sealing ring of the water-meter shell decreasing from 0.68 to 0 cm3, 1.39 to 0.22 cm3, and 1.32 to 0.23 cm3, respectively. A comparison between model predictions and experimental measurements indicated that the castings produced by the optimized process had good surface quality and beautiful appearance, without casting defects, demonstrating that numerical simulation can be used as an effective tool for improving casting quality.


2010 ◽  
Vol 139-141 ◽  
pp. 576-579
Author(s):  
Guo Fa Mi ◽  
Li Lin Chen ◽  
Hong Yan Nan

The V-method foundry is an advanced casting technology compared with traditional sand casting. The Pro/E software was used to generate three-dimensional model of cast parts. The solidification process of the automotive axle casting with V-method foundry was simulated by the numerical simulation software, ViewCast. The location and scale of the shrinkage defects caused by the original process were predicted. According to the simulation results, the position of the flange round cooled too fast, which blocked the feeding passage of the round near sprue. The reason was that solidifying sequence was unperfected. The casting process was optimized by means of adding runner and chill. Progressive solidification can be obtained and the shrinkage defects can be eliminated or transferred by the improved technology. The reasonable casting process was obtained and the process has been proofed by the productive practice.


2015 ◽  
Vol 9 (1) ◽  
pp. 58-64 ◽  
Author(s):  
Kuiyang Wang ◽  
Jinhua Tang ◽  
Guoqing Li

In order to optimize the design method and improve the performance of hydraulic retarder, the numerical simulation of multi-field coupling of heat, fluid and solid is carried out to hydraulic retarder, based on the numerical computation and algorithm of heat-fluid coupling and fluid-solid coupling. The computation models of heat-fluid coupling and fluid-solid coupling of hydraulic retarder are created. The three dimensional model of hydraulic retarder is established based on CATIA software, and the whole flow passage model of hydraulic retarder is extracted on the basis of the three dimensional model established. Based on the CFD calculation and the finite element numerical simulation, the temperature field, stress field, deformation and stress state are analysised to hydraulic retarder in the state of whole filling when the rotate speed is 1600 r/min. In consideration of rotating centrifugal force, thermal stress and air exciting vibration force of blade surface, by using the sequential coupling method, the flow field characteristics of hydraulic retarder and dynamic characteristics of blade structure are analysised and researched based on multi-field coupling of heat, fluid and solid. These provide the theoretical foundation and references for parametric design of hydraulic retarder.


2012 ◽  
Vol 538-541 ◽  
pp. 1837-1842 ◽  
Author(s):  
Long Zhi Zhao ◽  
Zi Wang ◽  
Xin Yan Jiang ◽  
Jian Zhang ◽  
Ming Juan Zhao

According to the characteristics of laser melt injection, a numerical model for a simplified 3D transient temperature field in molten pool was established using FLUENT software in this paper. In the model, many factors were considered such as liquid metal turbulence, latent heat of phase transformation and material thermo physical properties depending on temperature. The results show that the model can be developed well by FLUENT software. And the results also show that the driving force of the liquid metal flow mechanism.


2012 ◽  
Vol 452-453 ◽  
pp. 344-347
Author(s):  
Tian Neng Xu ◽  
Jie Mao ◽  
Hua Chen Pan

In dual-coolant and self-cooled blanket concepts, the magnetohydrodynamic (MHD) pressure drop is a key point that should be considered. In order to reduce the high MHD drop, it requires an understanding of the liquid metal flow in rectangular duct with FCI. In this paper, two cases that have different pressure equalization slot widths were simulated based on MHD module of FLUENT. It is found that with different widths of pressure equalization slot, velocity distribution and pressure drop changes a lot.


2019 ◽  
Author(s):  
Z. P. Li ◽  
L. Q. Sun ◽  
X. L. Yao ◽  
Y. Piao

Abstract In the process of bubbling from two submerged adjacent orifices, bubbles coalescence becomes inevitable. But the study of the evolution and interaction of bubbles from submerged orifices is little, especially numerical simulation. In this paper, combined with mesh smoothing technique, mesh subdivision technique and the technique of axisymmetric coalescence and 3D coalescence, a three-dimensional model of bubbles coalescence at two submerged adjacent orifices on the wall is established by the boundary element method. Then, numerical simulations were carried out for horizontal and vertical coalescence before detachment. Finally, by changing the ventilation rate and the Froude number, the effects of different ventilation rates and buoyancy on the process of bubbles coalescence at two adjacent orifices were investigated. The results show that for horizontal coalescence, the effect of ventilation rate is more pronounced than buoyancy. As the ventilation rate increases or the influence of buoyancy is decreased, the amplitude of internal pressure fluctuation of the bubble decreases and the coalescence time decreases. For vertical coalescence, the effect of buoyancy is more pronounced than ventilation rate. With the influence of buoyancy is decreased, the vertical coalescence time is increased, the internal pressure of the bubble is decreased. The influence of ventilation rate is similar to that of horizontal coalescence.


Sign in / Sign up

Export Citation Format

Share Document