Application of Numerical Simulation on Cast-Steel Axle’s V-Method Foundry

2010 ◽  
Vol 139-141 ◽  
pp. 576-579
Author(s):  
Guo Fa Mi ◽  
Li Lin Chen ◽  
Hong Yan Nan

The V-method foundry is an advanced casting technology compared with traditional sand casting. The Pro/E software was used to generate three-dimensional model of cast parts. The solidification process of the automotive axle casting with V-method foundry was simulated by the numerical simulation software, ViewCast. The location and scale of the shrinkage defects caused by the original process were predicted. According to the simulation results, the position of the flange round cooled too fast, which blocked the feeding passage of the round near sprue. The reason was that solidifying sequence was unperfected. The casting process was optimized by means of adding runner and chill. Progressive solidification can be obtained and the shrinkage defects can be eliminated or transferred by the improved technology. The reasonable casting process was obtained and the process has been proofed by the productive practice.

2011 ◽  
Vol 474-476 ◽  
pp. 432-435
Author(s):  
Guo Fa Mi ◽  
Li Lin Chen ◽  
Bao Zhong Liu ◽  
Hai Yan Wang

The Pro/E software was used to generate 3-D model of pneumatic hammer housing casting. The solidification process of the casting was simulated by the numerical simulation software, View Cast. The location and scale of the shrinkage defects were shown in the results. The risers were designed by the View Cast software based on the simulation results. The reasonable risers were obtained after the optimization on the numerical simulation. And the parameters of gating system were got according to the simulation results calculated by the gating system designing function of View Cast. Then the solidification results demonstrated that the risers and pouring system could be planned by View Cast effectually. The reasonable casting process was obtained and the process has been proofed by the productive practice.


2007 ◽  
Vol 561-565 ◽  
pp. 1801-1804
Author(s):  
Jie Yang ◽  
Lang Yuan ◽  
Shou Mei Xiong ◽  
Bai Cheng Liu

Slow shot velocity and its acceleration phase in the shot sleeve have great influence on the flow pattern of the liquid metal in the shot sleeve. In this paper, a three-dimensional model based on the SOLA-VOF algorithm was developed and used to simulate the flow of melt in the shot sleeve. The mathematical model was verified by water analog experiments with constant plunger velocities. Based on numerical simulation results, the influences of the plunger acceleration on the wave profile of the liquid metal in the shot sleeve under different fill ratios and sleeve diameters were investigated. The results indicated that in order to avoid air entrapment in the shot sleeve, the optimal acceleration value to the critical slow shot velocity increases with the increase of the fill ratio, and the range of suitable acceleration becomes wider as well. With the same fill ratio, the value of suitable acceleration rises as the plunger diameter increases.


2010 ◽  
Vol 44-47 ◽  
pp. 117-121
Author(s):  
Bin Feng He ◽  
Zhu Qing Zhao

There are many kinds of casting defects such as insufficient pouring, cooling separation, crack, and shrinkage and soon on were formed in the mold filling and the solidification process, which affect the final casting performance. Based on the mathematical models of mold filling and solidification process, the numerical simulation of chilled cast iron camshaft in sand casting process has been done. The filling behaviors at each stage in the filling process were presented. The temperature distributions in the solidification process were obtained, and the positions of shrinkages were predicted. According to the simulation results, an improved technology is proposed, and the shrinkages were eliminated efficiently. The simulation results are in good agreement with practical.


2013 ◽  
Vol 803 ◽  
pp. 317-320
Author(s):  
Hai Bo Yang ◽  
Guang Liang Wang ◽  
Xue Wen Chen ◽  
De Ying Xu

Using the ProCast casting simulation software to make squeeze casting process simulation and analysis of the solidification process of the air conditioning compressor front cover and predict the location of gas volumes and shrinkage defects in the filling process. When adjusted the process parameters, volumes gas defects were eliminated, but there was still shrinkage occurs in the center. When imposed a secondary pressure on the central part, shrinkage was eliminated.


2020 ◽  
Vol 12 (5) ◽  
pp. 168781402092345
Author(s):  
Kaikui Zheng ◽  
Youxi Lin ◽  
Weiping Chen ◽  
Lei Liu

The water-meter shell has a complex-structured thin-walled cavity, and it can cause casting defects such as shrinkage and misrun. On the basis of structural analysis of a water-meter shell, a three-dimensional model and a finite element model of the water-meter shell were constructed using the SOLIDWORKS and ProCAST software as a modeling tool and a casting numerical simulation tool, respectively. Three processes associated with the bottom gating system without a riser, a step gating system with a preliminary riser, and a step gating system with an optimum riser were successively numerically simulated. The mold-filling sequence, temperature distribution, liquid-phase distribution during solidification, and shrinkage distribution of these three processes are discussed here. The numerical simulation results indicated that optimization of the casting process and the rational assembling of the riser led to the shrinkage volumes at the inlet position, regulating sleeve, and sealing ring of the water-meter shell decreasing from 0.68 to 0 cm3, 1.39 to 0.22 cm3, and 1.32 to 0.23 cm3, respectively. A comparison between model predictions and experimental measurements indicated that the castings produced by the optimized process had good surface quality and beautiful appearance, without casting defects, demonstrating that numerical simulation can be used as an effective tool for improving casting quality.


2008 ◽  
Vol 575-578 ◽  
pp. 98-103
Author(s):  
Wen Yan Wang ◽  
Jing Pei Xie ◽  
Ji Wen Li ◽  
Ai Qin Wang ◽  
Luo Li Li ◽  
...  

The solidification process, the formation mechanism and distribution law of microporosity of the ball milling machine head cover made by SVEDALA corporation of USA were simulated by computer. The Solidworks software was used to generate three-dimensional model of cast parts and the Hua-casting software was employed to simulate the casting process. The simulated results show that significant microporosity was found in the middle of two casting heads and at the place of gudgeon journal because of insufficient chilling degree. The processing rationality was judged through the computer-aided technology, by which some drawbacks of the traditional process were overcome and the process design quality was improved.


2011 ◽  
Vol 225-226 ◽  
pp. 92-96
Author(s):  
Guo Fa Mi ◽  
Li Lin Chen ◽  
Hong Yan Nan ◽  
Hai Yan Wang

The design of the casting process was obtained by traditional casting design method. The process was composed of the choice of the casting position and the determination of casting parameters and the design of the gating system. According to the structural characteristics of sheave and quality requirements, the sheave hub and rim were poured separately. In order to achieve progressive solidification, two insulated risers were laid on the top of the wheel, and some risers were placed on the top of the hot spot in the rim and cold iron was introduced near by the thick part of the wheel hub. Three-dimensional model of the casting was generated and the solidification process of the sheave was simulated by View Cast. The results showed that the hot spot areas in the rim and thick part of the wheel hub have frozen finally, and the shrinkage formed in those areas. According to the simulation results and analysis, the casting process program was optimized by increasing the size of riser and the thickness of cold iron. After simulated once again, the defects were transferred to risers. The defects were eliminated to the greatest extent and the progressive solidification was achieved. So the reasonable program of the casting process was obtained.


2016 ◽  
Vol 16 (1) ◽  
pp. 61-68 ◽  
Author(s):  
S. Samavedam ◽  
S. Sundarrajan

Abstract US A356 and US 413 cast aluminium alloys shrinkage characteristic have been discussed in the present study. Specific volume reduction leads to shrinkage in castings and it can be envisaged as a casting defect. Finite difference based casting process simulation software has been used to study the shrinkage characteristic and it is quantified using mathematical formulae. The three dimensional model of the shrinkage defect has been constructed using CAD application software. Shrinkage characteristic has also been quantified through experimental validation studies and compared well with casting process simulation. Shrinkage characteristic study and control is essential for producing defect free castings. Influence of casting shape on the shrinkage characteristic has been studied in this paper.


2013 ◽  
Vol 791-793 ◽  
pp. 550-553 ◽  
Author(s):  
Dong Dong Han ◽  
Cheng Jun Wang ◽  
Juan Chang ◽  
Lei Chen ◽  
Huai Bei Xie

At present, pulley produced in China has been able to meet the demand of domestic and international markets. But there are many problem of the pulley industry in our country, such as too many production enterprises and the low level of export products. And as components of drive system are light weight and raw material price of pulley casting are rising, manufacturing requirements of the pulley are also more and more high. Aiming at the casting defects of pulley that enterprise current product, pulley casting blank model of common material HT250 be made by three-dimension software, numerical simulation of filling and solidification process for pulley sand casting by the casting simulation software Procast, the size and location of the various casting defects were forecasted and analyzed, reflecting the pulley filling and solidification process of the actual situation, due to the thicker pulley rim and less heat dissipation, position of shrinkage is close to the middle of rim [, a method of eliminating defects is proposed to realize sequential solidification, and thus to minimize porosity shrinkage and improve casting performance and reduce casting time and reduce production costs.


Sign in / Sign up

Export Citation Format

Share Document