Degradation of Yttria Stabilized Zirconia Thermal Barrier Coatings by Molten CMAS (CaO-MgO-Al2O3-SiO2) Deposits

2008 ◽  
Vol 595-598 ◽  
pp. 207-212 ◽  
Author(s):  
Prabhakar Mohan ◽  
Biao Yuan ◽  
Travis Patterson ◽  
Vimal Desai ◽  
Yong Ho Sohn

In advanced gas turbine engines that operate in a dust-laden environment causing ingestion of siliceous debris into engines, thermal barrier coatings (TBCs) are highly susceptible to degradation by molten CMAS (calcium-magnesium alumino silicate) deposits. In this study, the degradation mechanisms other than the commonly reported thermomechanical damage are investigated with an emphasis on the thermochemical aspects of molten CMAS induced degradation of TBCs. Free-standing yttria stabilized zirconia (8YSZ) TBC specimens in contact with a model CMAS composition were subjected to isothermal heat treatment in air at temperatures ranging from 1200°C to 1350°C. Phase transformations and microstructural development were examined by using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Starting at 1250°C, the molten CMAS readily infiltrated and dissolved the YSZ coating followed by reprecipitation of zirconia with a different morphology and composition that depends on the local melt chemistry. Significant amount of Y2O3 depleted monoclinic ZrO2 phase evolved from CMAS melt that dissolved ť-ZrO2 was evident. Thus the mechanism of dissolution and reprecipitation due to molten CMAS damage resulted in destabilization of the YSZ with disruptive phase transformation (t’ f + m).

2005 ◽  
Vol 492-493 ◽  
pp. 379-384 ◽  
Author(s):  
Klod Kokini ◽  
Sudarshan V. Rangaraj

The thermal fracture and its dependence on time-dependent behavior in functionally graded yttria stabilized zirconia - NiCoCrAlY bond coat alloy thermal barrier coatings was studied. The response of three coating architectures of similar thermal resistance to laser thermal shock tests was considered, experimentally and computationally.


Sign in / Sign up

Export Citation Format

Share Document